
Latent Zoning Network:
A Unified Principle for Generative Modeling,
Representation Learning, and Classification

Zinan Lin∗

Microsoft Research
Redmond, WA, USA

Enshu Liu
Tsinghua University

Beijing, China

Xuefei Ning
Tsinghua University

Beijing, China

Junyi Zhu†

Samsung R&D Institute UK
London, UK

Wenyu Wang
Redmond, WA, USA

Sergey Yekhanin
Microsoft Research

Redmond, WA, USA

Abstract
Generative modeling, representation learning, and classification are three core
problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions
remain largely disjoint. In this paper, we ask: Can a unified principle address all
three? Such unification could simplify ML pipelines and foster greater synergy
across tasks. We introduce Latent Zoning Network (LZN) as a step toward
this goal. At its core, LZN creates a shared Gaussian latent space that encodes
information across all tasks. Each data type (e.g., images, text, labels) is equipped
with an encoder that maps samples to disjoint latent zones, and a decoder that maps
latents back to data. ML tasks are expressed as compositions of these encoders and
decoders: for example, label-conditional image generation uses a label encoder
and image decoder; image embedding uses an image encoder; classification uses
an image encoder and label decoder. We demonstrate the promise of LZN in
three increasingly complex scenarios: (1) LZN can enhance existing models
(image generation): When combined with the SoTA Rectified Flow model, LZN
improves FID on CIFAR10 from 2.76 to 2.59—without modifying the training
objective. (2) LZN can solve tasks independently (representation learning):
LZN can implement unsupervised representation learning without auxiliary loss
functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and
0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can
solve multiple tasks simultaneously (joint generation and classification): With
image and label encoders/decoders, LZN performs both tasks jointly by design,
improving FID and achieving SoTA classification accuracy on CIFAR10. The
code and trained models are available at https://github.com/microsoft/
latent-zoning-networks. The project website is at https://zinanlin.me/
blogs/latent_zoning_networks.html.

1 Introduction
Generative modeling, representation learning, and classification are three of the most widely used
machine learning (ML) tasks. Generative models like DALLE [70, 69, 5] and GPT [67, 68, 7, 1] power
applications such as question answering and content creation. Representation learning, exemplified
by CLIP [66], supports tasks like information retrieval. Classification is central to tasks such as object
recognition [17] and sentiment analysis [19, 54].

Notably, the state-of-the-art (SoTA) techniques for these tasks differ. For example, SoTA generative
modeling relies on diffusion models [32, 75, 77] and auto-regressive transformers [67, 68, 7, 1]; SoTA

∗Correspondence to: Zinan Lin (zinanlin@microsoft.com).
†Junyi Zhu conducted this collaboration while at KU Leuven.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

ar
X

iv
:2

50
9.

15
59

1v
1

 [
cs

.L
G

]
 1

9
Se

p
20

25

https://github.com/microsoft/latent-zoning-networks
https://github.com/microsoft/latent-zoning-networks
https://zinanlin.me/blogs/latent_zoning_networks.html
https://zinanlin.me/blogs/latent_zoning_networks.html
zinanlin@microsoft.com
https://arxiv.org/abs/2509.15591v1

Shared
latent space

①②
③④
⑤⑥
⑦⑧
⑨⑩
⑪
⑫
⑬
⑭
⑮
⑯
⑰

①②④ ⑤

Examples of tasks:
① Unconditional image generation
② Image embedding
③ Label-conditioned image generation
④ Image classification
⑤ Text embedding
⑥ Image-to-text generation
 (e.g., image captioning)
⑦ Text-to-image generation
⑧ Text-to-text generation (e.g., chatbot)

⑧
③

⑦
⑥

Figure 1: Latent Zoning Network (LZN) connects multiple encoders and decoders through a
shared latent space, enabling a wide range of ML tasks via different encoder-decoder combinations or
standalone encoders/decoders. The figure illustrates eight example tasks, but more could be supported.
Only tasks 1-4 are evaluated in this paper, while the rest are for illustration.

Latent space

Follows
Gaussian
distribution

“Cat” “Dog”

“Bird”

The latent zone
of label

The latent zone
of image

Figure 2: The latent space of LZN has two
key properties: (1) Generative: It follows
a simple Gaussian prior, allowing easy sam-
pling for generation tasks. (2) Unified: It
serves as a shared representation across all
data types (e.g., image, text, label). Each
data type induces a distinct partitioning of
the latent space into latent zones, where
each zone corresponds to a specific sample
(e.g., an individual image or label). The
latent space is shown as a closed circle for
illustration, but it is unbounded in practice.

Samples

Anchor
points

Latent computation

Latent
zones

Latent
alignment

Encoder
1

Latent space

Flow
matching

Encoder
2

“Cat” “Dog” “Bird”

Latent space

Flow
matching

Figure 3: Training and inference in LZN rely on two
atomic operations: (1) Latent computation (§ 2.2.1):
Computes latent zones for a data type by encoding sam-
ples into anchor points and using flow matching (FM)
[53, 51] to partition the latent space. Conversely, any la-
tent point can be mapped to a sample via the decoder (not
shown). (2) Latent alignment (§ 2.2.2): Aligns latent
zones across data types by matching their FM processes.
This figure also illustrates the approach for LZN in joint
conditional generative modeling and classification (§ 5).

representation learning employs contrastive loss [28, 10, 26]; and SoTA classification uses dedicated
models trained with cross-entropy loss and its variants [46]. Although using distinct methods for these
tasks has long been established and widely accepted in the community, we revisit this methodology
from first principles and question its necessity. Specifically, we ask, out of curiosity:

Can a single principle unify generative modeling, representation learning, and classification?

Part of our motivation stems from Occam’s Razor [82], which favors simpler solutions when possible.
More importantly, while these tasks differ in formulation, they are fundamentally related and can
benefit from one another; a unified principle could facilitate such synergy.3

In this paper, we reflect on the strengths and limitations of existing techniques and propose a new
unified framework, Latent Zoning Network (LZN), illustrated in Figs. 1 and 2. At the core of our
design is a shared latent space that connects a series of encoders and decoders, each corresponding
to a specific data type (e.g., images, text, labels). Encoders map data into a zone in the latent
space, and the corresponding decoder maps it back to the data. Different tasks can be interpreted as

3While auto-regressive (AR) transformers with large-scale pre-training provide one approach to unify these
tasks [67, 68, 7, 1], SoTA transformer-based representation learning still relies on contrastive learning [45, 88].
More importantly, our approach can be viewed as an orthogonal layer on top of transformers and should be seen
as complementary rather than competing. See § 2.4 for further discussion.

2

performing “translations” within the latent space—either using encoder–decoder pairs or leveraging
a single encoder or decoder. Compared to popular representation learning approaches, which place
no constraint on the latent distribution [10], LZN’s latent space is generative: it follows a simple prior
distribution for easy sampling. In contrast to modern generative modeling approaches, where different
conditions (e.g., class labels, text) are treated as separate inputs [86], LZN maintains a single latent
space that unifies different types of conditional information. Finally, unlike standard classification,
where class labels are model outputs, LZN treats “class labels” as a data type connected through the
latent space like any other data type.

To train and perform inference with LZN, we rely on two atomic operations (Fig. 3 and § 2): (1) Latent
computation: Given an encoder, we compute the latent zones for a batch of samples. Specifically,
we first use the encoder to compute each sample’s anchor point, then apply flow matching [53, 51]
to map these points to their corresponding latent zones. This procedure ensures that the resulting
zones collectively follow a simple Gaussian distribution, facilitating generation tasks, while also
guaranteeing that zones from different samples remain disjoint–allowing them to serve as unique
latents for classification and representation learning. (2) Latent alignment: Aligning the latent zones
produced by two different encoders to facilitate the tasks that require translations between encoders
and decoders from different data types. This is a fundamentally challenging task due to its discrete
nature. To address it, we introduce a novel “soft” approximation that performs the alignment midway
through the flow matching process, enabling effective and tractable training.

We demonstrate that, despite its simplicity and reliance on just two atomic operations, LZN is capable
of supporting a wide range of seemingly diverse tasks. To illustrate its versatility and practical utility,
we present three levels of applications:

• L1: Enhancing one existing task (§ 3). Because LZN latents can be computed without su-
pervision, they can be seamlessly integrated into existing models as an additional conditioning
signal–without requiring any changes to the training loss or methods. In this setup, LZN latents
hopefully can learn to improve the task performance. To demonstrate this, we incorporate LZN into
rectified flow models [53]–a state-of-the-art generative approach for images–and observe improved
sample quality across CIFAR10, AFHQ-Cat, CelebA-HQ, LSUN-Bedroom datasets. Specifically,
on CIFAR10, LZN closes the FID gap between conditional and unconditional generation by 59%.

• L2: Solving one task independently (§ 4). LZN can also tackle tasks entirely on its own,
without relying on existing methods. As a case study, we use LZN to implement unsupervised
representation learning, a task traditionally addressed with contrastive loss. We find that LZN can
even outperform the seminal methods such as MoCo [28] and SimCLR [10] by 9.3% and 0.2%,
respectively, on downstream ImageNet linear classification.

• L3: Solving multiple tasks simultaneously (§ 5). Pushing further, LZN is capable of handling
multiple tasks at once. In particular, we employ two encoder–decoder pairs—one for images and
one for labels—enabling LZN to jointly support class-conditional generation and classification
within a single, unified framework. Built on rectified flow, this implementation outperforms the
baseline conditional rectified flow model in generation quality, while also achieving state-of-the-
art classification accuracy. Notably, the performance on both generation and classification exceeds
that of training each task in isolation. This supports our core motivating intuition: seemingly
distinct tasks can benefit from shared representations, and LZN provides a principled framework
for enabling such synergy.

While the early results are promising, many challenges, open questions, and exciting opportunities
remain unexplored. In principle, as more encoder–decoder pairs are added to the shared latent space,
the range of applications LZN can support should grow at least quadratically (Fig. 1). Whether LZN
can scale gracefully and realize this potential remains to be seen. We hope this work opens a new line
of research toward this ambitious vision. See more discussions in § 6.

2 Latent Zoning Network (LZN)
2.1 Overall Framework

Revisiting existing approaches. To motivate our design on a unified framework for diverse ML
tasks, we first analyze the strengths and limitations of existing approaches.

• Generative modeling. Given samples x ∼ p from an unknown distribution p, generative models
aim to learn a decoder Dx such that Dx (z) approximates p, where z is random noise drawn

3

from a simple distribution.4 While z can carry useful information for representation learning
and classification [50], this pipeline has key limitations: (1) The mapping from z to x lacks
flexibility. For example, in diffusion models, the optimal mapping is fixed once the distributions
of x and z are fixed [77]. To introduce controllability, models often augment D with additional
condition inputs c1, . . . , ck: G(z, c1, . . . , ck) [86]. This is suboptimal–conditions may overlap
or conflict (e.g., text vs. label conditions in image generation), and the resulting representation
(z, c1, . . . , ck) becomes fragmented. (2) Inverting D to recover z from a sample x is non-trivial
for some SoTA generative models [36]. These issues limit the effectiveness of generative models
for representation learning, as also observed in prior work [24].

• Unsupervised representation learning.5 SoTA representation learning typically uses contrastive
loss [10], where an encoder E maps related sample pairs–either from the same modality (e.g.,
image augmentations) or across modalities (e.g., image–text pairs)–to similar embeddings, while
pushing unrelated samples apart. These embeddings can perform zero-shot classification by
comparing pairwise cosine similarities [66] or be adapted for classification using a linear head
trained with cross-entropy loss [10]. However, contrastive loss leads E to discard important
details (e.g., augmentations, modalities), making the representations unsuitable for standalone
generation. Moreover, with few exceptions [2], the representations lack distributional constraints,
making them hard to sample from for generative tasks unless training an additional generative
model [44].

• Classification. The most common and SoTA classification approach trains a dedicated model
with cross-entropy loss to map inputs to class labels [19, 54]. Intermediate layer outputs can be
used as representations [79]. However, because the objective focuses solely on classification,
these representations tend to discard class-irrelevant information, limiting their utility for general-
purpose representation or generation. As with contrastive learning, they also lack distributional
constraints for generative tasks.

While one could combine the above objectives and methods into a single training setup [60, 43], our
focus is on designing a clean, unified framework that naturally integrates all these tasks.

Desiderata. We observe that all the above tasks can be framed as learning mappings between
data and a latent space. The main differences lie in: the mapping direction (e.g., latent-to-data for
generation, data-to-latent for representation/classification), constraints on the latent space (e.g., a
simple prior for generative models, none for others), and the amount of information encoded (e.g.,
class labels for classification tasks, detailed reconstructions for generative models). To support all
these tasks in a single framework, we seek: (1) A unified latent space that captures all necessary
information of all tasks; (2) A generative latent space that follows a simple distribution; and (3)
Easy mappings between data and latent in both directions.

Framework. To address the above desiderata, our key designs are (Fig. 2):

• A unified latent space. In existing frameworks, a sample like text can play inconsistent roles–
appearing as input latent in text-to-image generation or as output in text generation. This makes it
hard to define a unified latent space across tasks.
We address this by introducing a hypothetical foundation latent space that represents all possible
samples in the world. Each foundation latent is an abstract entity that appears through observations
in different data types, such as images, text, and even class labels (e.g., “cat” or “dog”).
Importantly, different latents can share the same observation (e.g., multiple cat images all labeled
“cat” and described as “a cat image”). As a result, each observed sample defines a latent zone—a
subset of the latent space that produces the same observation in that data type. This provides a
unified way to represent and connect all data types within the same latent space.

• A generative latent space. We enforce the latent space to follow a Gaussian distribution, enabling
easy unconditional sampling without constraining any data type. Our framework also supports
easy conditional sampling from a latent zone induced by an observed sample (e.g., a label).

• Easy mappings. Given samples of a data type, we compute their latent zones via the correspond-
ing encoder. Conversely, a latent point can be decoded into a data type using its decoder.

Tasks. This design naturally supports a variety of tasks (Fig. 1):

4For diffusion models [32, 75, 77], z is the initial Gaussian noise in the sampling process, plus intermediate
noise if using SDE sampling [78]. For AR transformers, z can be seen as the randomness in token sampling.

5We use “latent”, “representation”, and “embedding” interchangeably in the paper.

4

• Single-module tasks. A standalone encoder or decoder can perform specific tasks independently.
For instance, the image encoder alone produces image embeddings (representations), while the
image decoder alone enables unconditional image generation.

• Cross-module tasks. Any encoder–decoder pair defines a task. For example, label encoder
+ image decoder enables class-conditional image generation, image encoder + label
decoder does classification, and text encoder + text decoder supports text generation.

We expect that tasks can benefit from each other through this unified framework (validated in § 5).
Each task contributes its core information to the latent space, making it increasingly expressive and
powerful. Conversely, since all tasks interface through the same latent space, improvements in the
latent representations can facilitate learning across tasks.

As the latent space partitions into zones, we name this framework Latent Zoning Network (LZN).

2.2 Implementation of Atomic Operations

Training and inference in LZN rely on two operations (Fig. 3): latent computation and latent alignment.
We will see in § 3 to 5 that these two operations are sufficient to implement a variety of tasks.

2.2.1 Latent Computation

Desiderata. Latent computation is important in both training and inference of LZN. Given samples
X = {x1, . . . , xn} of the same data type (e.g., images, text, labels), the goal is to sample their latents
z1, . . . , zn = C (X) with a random latent computation function C such that: (1) Prior distribution
is Gaussian: the latent z ∼ Uniform {z1, . . . , zn} follows Gaussian distribution N (0, I), and (2)
The latent zones of different samples are disjoint: Supp (zi) ∩ Supp (zj) = ∅ for i ̸= j.

Approach. To achieve this, we first use a deterministic encoder Ex to map each sample to an
anchor point ai = Ex (xi). We then apply the seminal flow matching (FM) method [53, 51], which
establishes a one-to-one mapping between distributions, to transform these anchor points into latent
zones. Specifically, we define a family of distributions πt with endpoints π0 = N (0, I), the desired
prior latent distribution, and π1(s) = 1

n

∑n
i=1 δ(s − ai), the distribution of the anchor points.6

The intermediate distribution πt is induced by linearly interpolating between samples s0 ∼ π0 and
s1 ∼ π1 via φ(s0, s1, t) = (1 − t)s0 + ts1 (i.e., πt is (1− t)π0 + tπ1). The velocity field in FM
[53] can then be computed as

V (s, t) ≜ Es0∼π0,s1∼π1

(
∂φ(s0, s1, t)

∂t
|φ(s0, s1, t) = s

)
=

∑n
i=1(ai − s) exp

(
− (s−tai)

2

2(1−t)2

)
(1− t)

∑n
i=1 exp

(
− (s−tai)

2

2(1−t)2

) .

We can obtain st by integrating along the FM trajectory: st = FMx (s0; t) ≜ s0 +
∫ t

τ=0
V (sτ , τ)dτ

for s0 ∼ π0. It has been shown [53] that the distribution of st is πt. Similarly, integrating backward
st = IFMx (s1−g; t) ≜ s1−g +

∫ t

τ=1−g
V (sτ , τ)dτ for s1−g ∼ π1−g ≜ (1 − g)π1 + gN (0, I)

also yields πt, where g is a small constant.7 With a slight abuse of notation, we also write st =
IFMx (ai, ϵi; t) to represent IFMx (s1−g; t) with s1−g = (1 − g)ai + gϵi. With these setups, we
define the latent computation as

zi = C (X)i ≜ IFMx (ai, ϵi; 0) , where ϵi ∼ N (0, I). (1)
Due to the discussed FM properties, this satisfies the two desiderata by construction (§ A.1).

Implementation. Computing C involves an integral, which we approximate using standard numerical
solvers such as Euler or DPM-Solver [55, 56] that operates on a finite list of time steps t1, . . . , tr,
as in prior work on diffusion and RF models [53, 78]. A key property of our approach is that all
operations are differentiable, allowing gradients to backpropagate all the way from latent zi to the
encoders Ex during training. More details are deferred to § A.2.

Efficiency optimization. Computing the velocity V requires access to all samples, making the
memory and computation cost of C high. To address this, we introduce several optimization

6δ denotes the Dirac delta function.
7FM is well-defined only when both π0 and π1 have full support. However, in our case, π1 is a mixture of

Dirac deltas and lacks full support. Therefore, we use the full-support distribution π1−g as the starting point.

5

techniques–latent parallelism, custom gradient checkpointing, and minibatch approximation–that
make the training of LZN scalable. See § A.3 for details.

2.2.2 Latent Alignment
Desiderata. Following § 2.2.1, latent zones from different data types are computed independently,
which undermines the purpose of a shared latent space. Many applications require these zones to
be aligned. We consider two types of alignment: (1) Many-to-one (and one-to-many) alignment:
for example, the latent zone of the “cat” label should cover all latent zones of all cat images. (2)
One-to-one alignment: for example, in image-text datasets, paired image and text samples should
share the same latent zone. Concrete examples will be shown in § 4 and 5.

Formally, let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two datasets from different data types.
The pairing is defined by ki, where yi (e.g., a cat image) is paired with xki

(e.g., the “cat” label).
We aim to ensure Supp

(
C (X)ki

)
⊇ Supp (C (Y)i) for all i ∈ [m], meaning the latent zone of

xki
covers that of yi. This formulation supports many-to-one alignments directly. For one-to-one

alignment, a symmetric constraint can be added with x and y swapped.

Approach. Given the FM integral trajectories, alignment reduces to ensuring that the latent of yi,
when mapped via the trajectory, matches the anchor point of xki

: FMx (C (Y)i ; 1) = Ex (xki
) .

Challenge: discrete assignment is non-differentiable. Before introducing our solution, we illustrate
why the problem is nontrivial by examining strawman approaches. A natural idea is to directly
minimize the distance: d (FMx (C (Y)i ; 1) , Ex (xki)) , where d (·, ·) is a distance metric. This
approach fails because FM deterministically maps each latent to exactly one anchor point Ex (xj), so
the above objective effectively becomes minimizing the distance between anchor points. However,
a latent zone is influenced by all anchor points, not just its own. Therefore, reducing the distance
between a pair of anchors does not necessarily improve zone-level alignment. More fundamentally,
the core challenge is that FM induces a discrete assignment: each latent deterministically maps to one
anchor. This discrete operation is non-differentiable and cannot be directly optimized during training.

Technique 1: Soft approximation of alignment. To address this issue, our key idea is to introduce a
soft approximation of the discrete anchor assignment process. Let us define sit = FMx (C (Y)i ; t)
and al = Ex (xl). By construction, the distribution πt is a mixture of Gaussians: πt =
1
n

∑n
l=1N (tal, (1 − t)2I), where the l-th component corresponds to anchor al. We define the

(soft) probability that sit is assigned to al as being proportional to the density of sit under the l-th
Gaussian component:

P
(
al|sit

)
= exp

(
− ∥sit−tal∥

2

2(1−t)2

)
/
∑n

j=1 exp

(
−

∥sit−taj∥
2

2(1−t)2

)
.

This formulation provides a smooth, differentiable approximation of the otherwise discrete assignment.
When t = 0, the approximation is fully smooth, with P

(
al|si0

)
= 1/n for all i, l, reflecting a uniform

assignment. As t increases toward 1, the assignment becomes sharper. In the limit as t → 1, it
converges to the true discrete assignment, where sit deterministically maps to its assigned anchor.

From this, a straightforward idea is to maximize the assignment probability over all time steps such
as

∑
t∈{t1,...,tr} P

(
aki
|sit

)
(recall that tis are solver time steps; see § 2.2.1). However, our ultimate

goal is only to ensure correct assignment at t = 1. Even if this is achieved, the above objective would
continue to push the intermediate states st toward aki

, which is unnecessary and potentially harmful.

Technique 2: Optimizing maximum assignment probability. To avoid this, we propose to maximize
maxt∈{t1,...,tr} P

(
aki
|sit

)
. This ensures that once the trajectory reaches the correct anchor near

t = 1, the objective is maximized (i.e., equals 1) and no further gradient is applied as desired.

Technique 3: Early step cutoff. However, this approach introduces a new issue: if st diverges from
aki early on, the maximum probability remains at the constant 1/n (attained at t = t1 = 0), yielding
no training signal. To mitigate this, we truncate the set of time steps used in the maximization,
restricting it to the later stages of the trajectory: {tu, . . . , tr}, where u is a hyperparameter that
excludes early time steps. Putting it all together, our proposed alignment objective is:

Align (X ,Y) ≜ maximize
m∑
i=1

max
t∈{tu,...,tr}

P
(
aki
|sit

)
. (2)

Please see § B for more implementation details.

6

Latent space

Generation

Training Generator
Draw a latent of the target image
as an extra condition input to the generator

Generator Draw a latent from the whole latent space (standard Gaussian)
as an extra condition input to the generator

Figure 4: LZN for unconditional generative modeling (§ 3). During training, the LZN latent of each
target image is fed as an extra condition to the rectified flow (RF) model [53], making the RF learn
conditional flows based on LZN latents. The objective remains the standard RF loss, and the LZN
encoder is trained end-to-end within it. During generation, we sample LZN latents from a standard
Gaussian and use them as the extra condition. We illustrate the approach with RF, but since LZN
latents require no supervision and are differentiable, the method could apply to other tasks by adding
a condition input for LZN latents to the task network.

2.3 Decoder
The decoder Dx maps the LZN latent back to its corresponding sample: Dx (zi) = xi. As we will
describe in more detail later, it can be implemented using either a generative model (§ 3) or FM (§ 5).

2.4 Relationships to Alternatives
A prominent alternative that can also unifies different ML tasks is the use of AR transformers with
large-scale pertaining, such as large language models (LLMs) [67, 68, 7, 1]. These models unify
generation tasks by representing all data as sequences of tokens and modeling them in an AR manner.
Classification tasks are cast as generation problems—for instance, prompting the model to complete
the sentence “Which animal is in this image?” [68]. Additionally, prior work has shown that the
intermediate outputs in these models can serve as strong representation for downstream tasks [71].

As such, this approach is generation-centric: the core formulation remains a generative modeling
problem. Tasks that can be framed as generation–such as classification-can be unified naturally.
However, for other tasks like representation learning, this approach must rely on surrogate methods,
such as using intermediate model outputs. In contrast, LZN offers a new formulation that seamlessly
unifies all these tasks within a single framework, as we will demonstrate in the following sections.

More importantly, AR transformers (and other generative models) should be seen as orthogonal
and complementary to LZN, rather than as competitors. In particular, LZN decoders that map latents
to data samples can be instantiated using any generative model. We demonstrate this in § 3 and 5.
This allows LZN to leverage the strengths of existing generative models within its unified framework.

2.5 Scope of Experiments
While the framework is general, this paper focuses specifically on the image domain. We present
three case studies: (1) generation (§ 3), (2) unsupervised representation learning (§ 4), and (3) joint
classification and generation (§ 5). These case studies are arranged in order of increasing complexity:
the first enhances a single task, the second solves a task using only LZN without any other external
objectives, and the third tackles multiple tasks simultaneously within the same framework.

3 Case Study 1: Unconditional Generative Modeling
Approach (Fig. 4). Since LZN latents C (X) can be computed using a standalone encoder without
introducing new training objectives (§ 2.2.1), they can be easily integrated into existing pipelines
as additional network inputs, without modifying the original loss function. We apply this idea
to unconditional generative models, where the generator serves as the LZN decoder. We modify
the decoder by adding an extra input to accept the LZN latents. Both the encoder and decoder are
trained jointly using the original generative loss. In this setup, latent alignment (§ 2.2.2) is not used.
Importantly, the encoder is only used during training to compute C (X). During inference, latents
are sampled from the Gaussian prior and passed directly to the decoder, maintaining the original
model’s inference efficiency. Please see § C.1 for detailed pseudocode of the training and generation
processes.

Why it helps. LZN latents provide unique representations for each image. This pushes the generator
(decoder) to depend more directly on the latent for reconstruction, making the image distribution
conditioned on the latent more deterministic. As a result, the generative objective becomes easier to
optimize. Our experiments later confirm that LZN latents indeed capture useful features for generation.

7

Table 1: Unconditional image generation quality scores across four datasets. The best results are
in gray box . Applying LZN to generative models improves RF on most image quality metrics. RF
is a SoTA method; due to space constraints, we omit additional methods—see [53] for extensive
comparisons between RF and others. Note that Inception Score (IS) is best suited for natural images
like CIFAR10, though we report it for all datasets for completeness.

Algo. CIFAR10 (32× 32) AFHQ-Cat (256× 256)
FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓ Recon↓ FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓ Recon↓

RF 2.76 4.05 9.51 0.70 0.59 0.0360 0.83 6.08 49.60 1.80 0.86 0.28 0.5145 17.92
RF+LZN 2.59 3.95 9.53 0.70 0.59 0.0355 0.41 5.68 49.32 1.96 0.87 0.30 0.3376 10.29

Algo. CelebA-HQ (256× 256) LSUN-Bedroom (256× 256)
FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓ Recon↓ FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓ Recon↓

RF 6.95 10.61 2.91 0.76 0.42 1.0276 26.20 6.25 16.22 2.18 0.60 0.40 0.5218 48.72
RF+LZN 7.17 10.33 2.92 0.76 0.45 0.4901 15.90 5.95 17.84 2.22 0.59 0.41 0.4843 37.01

Figure 5: Generated images of RF+LZN on AFHQ-Cat, CelebA-HQ, LSUN-Bedroom. More in § C.

Related work. RCG [44] also aims to improve unconditional image generation with unsupervised
representations. However, RCG separates the process into distinct stages: it first trains a representation
model, then a generator on those representations, followed by a conditional generator conditioned
on the representations. In contrast, our approach requires no separate stages or extra loss terms;
everything is trained end-to-end with the original generative objective.

Results. We plug LZN latents into the seminal rectified flow (RF) models [53], which is closely
related to diffusion models [32, 75, 77]. RF achieved SoTA image generation performance on several
datasets [53, 41], and has been used in some latest Stable Diffusion models [23] and AR models [52].

We follow the experimental setup of RF [53], evaluating on four datasets: CIFAR10, AFHQ-Cat,
CelebA-HQ, and LSUN-Bedroom. The latter three are high-resolution (256 × 256). In addition to
standard metrics—FID [31], sFID [58], IS [72], precision [40], recall [40], and CMMD [33]—we
also report reconstruction error (the ℓ2 distance between an image and its reconstruction), which is
relevant for applications like image editing via latent manipulation [74, 50]. Results are shown in
Tab. 1, with three key findings: (1) LZN latents improve image quality. During inference, the only
difference in RF+LZN is the inclusion of an additional latent drawn from a Gaussian distribution. This
improvement indicates that the decoder effectively leverages LZN latents for meaningful generative
features. (2) LZN significantly reduces reconstruction error across all datasets, further confirming
that its latents capture essential image information. (3) While unconditional generation is important,
its image quality often trails that of conditional generation [44]. Compared to RF’s CIFAR10 results in
Tab. 4, we find that LZN substantially reduces the FID gap between conditional and unconditional
generation by 59%, and even outperforms conditional RF in sFID and reconstruction error.

See Fig. 5 for some generated images. Due to space constraints, please refer to § C for more details
on implementation, datasets, metrics, and additional results such as more generated images
and ablation studies.

4 Case Study 2: Unsupervised Representation Learning

Related work. Contrastive learning is a popular approach to unsupervised representation learning
[10, 11, 28, 12, 14, 26, 13], which pulls similar images (e.g., augmentations of the same image)
together in the representation space. A central challenge is avoiding collapse, where all inputs
are mapped to the same representation. Common solutions include pushing the representations of
dissimilar samples from large batches [10] or memory banks [28] away, or adopting architectural
designs that prevent collapse [26, 13, 28]. Other unsupervised representation learning approaches
[73, 42] include masked image modeling [43, 4, 27, 63] and training on other auxiliary tasks
[83, 59, 65, 25].

Approach (Fig. 6). Inspired by contrastive learning, we train an image encoder using Align (X ,Y)
(§ 2.2.2), where X = {xi}ni=1 and Y = {yi}ni=1 with mapping ki = i contain image pairs (xi, yi)
of random augmentations of the same image. Unlike traditional contrastive methods, our approach
inherently avoids collapse: different images are mapped to distinct latent zones by design, eliminating
the need for large memory banks or specialized architectures. Notably, only a single LZN encoder

8

Latent
alignmentLatent space Latent space

Data
augmentation

Figure 6: LZN for unsupervised representation learning (§ 4). During training, each image batch
undergoes two sets of data augmentations, and latent zones for each set are computed using the same
encoder. We then apply latent alignment (§ 2.2.2) to train the encoder. At inference, we can use the
LZN latents, the encoder outputs (i.e., anchor points), or intermediate encoder outputs (§ D.4). The
latter two options avoid the costly latent computation process.

Table 2: Classification accuracy on
ImageNet by training a linear classifier on
the unsupervised representations. Methods
marked with § are based on contrastive learn-
ing.8 The horizontal line separates baselines
that perform worse or better than our LZN.
All methods use the ResNet-50 architecture
[29] for fair comparison.9

Algorithm Top-1 Acc↑ Top-5 Acc↑
InstDisc§ [84] 54.0 [28] -

BigBiGAN [21] 56.6 [28] -
LocalAgg§ [90] 58.8 [28] -

MoCo§ [28] 60.2 [10] -
PIRL§ [57] 63.6 [10] -

CPC v2§ [30] 63.8 [10] 85.3 [10]
CMC§ [80] 66.2 [26] 87.0 [26]

SimSiam§[13] 68.1 [13] -
SimCLR§ [10] 69.3 [10] 89.0 [10]
MoCo v2§ [12] 71.7 [12] -

SimCLR v2§ [11] 71.7 [11] -
BYOL§ [26] 74.3 [26] 91.6 [26]
DINO§ [9] 75.3 [9] -

LZN 69.5 89.3

Table 3: Classification accuracy on CIFAR10. Base-
line results are from [39]. “RF+LZN (no gen)” refers
to “RF+LZN” with the RF loss for generation disabled.
The horizontal line separates baselines that perform
worse or better than our RF+LZN. Note that these re-
sults refer to training purely on the CIFAR10 dataset
(without pretraining or external data).

Algorithm Acc↑
VGG16 92.64%

ResNet18 93.02%
ResNet50 93.62%
ResNet101 93.75%

RegNetX_200MF 94.24%
RegNetY_400MF 94.29%

MobileNetV2 94.43%
ResNeXt29(32x4d) 94.73%
ResNeXt29(2x64d) 94.82%

SimpleDLA 94.89%
DenseNet121 95.04%

PreActResNet18 95.11%
DPN92 95.16%
DLA 95.47%

RF+LZN (no gen) 93.59%
RF+LZN 94.47%

for both X and Y is needed and decoders are not required. See § D.1 for pseudocode of the training
process.

Results. We follow the canonical setting [10, 26, 28], where LZN is trained on the unlabelled
ImageNet dataset using ResNet-50 [29] to learn representations. A linear classifier is then trained on
top of these representations in a supervised manner, and its accuracy is evaluated on the ImageNet
test set. The results are shown in Tab. 2. Note that these results are obtained without any pretraining
or use of external data. We observe that LZN matches or outperforms several established methods
in the field, including seminal approaches such as MoCo [28] (LZN outperforms it by 9.3%)
and SimCLR [10] (LZN outperforms it by 0.2%). This is remarkable given that LZN is a new
framework capable of supporting not only unsupervised representation learning but also other tasks
(§ 3 and 5). However, there remains a significant gap to SoTA performance. We emphasize that our
current results are not fully optimized: (1) Training iteration. The performance of LZN continues
to improve rapidly with ongoing training (§ D), so we expect the gap to SoTA to narrow with full
training. (2) Architecture. Prior work shows that more advanced architectures like ViT can improve
the results significantly [14]. We leave these directions for future work.

Due to space constraints, please refer to § D for more details on implementation, datasets, metrics,
and additional results such as representation visualization and ablation studies.

8Note that we use the term contrastive learning broadly to refer not only to methods employing the traditional
contrastive loss, but to all approaches that encourage relevant images to share similar representations; see § 4.

9It is known that better architectures [11] or training on larger datasets [62] can yield stronger results. To
ensure a fair comparison, we include only methods reporting results with the ResNet-50 architecture trained
on the ImageNet dataset. This excludes potentially stronger methods lacking ResNet-50 results on ImageNet,
such as DINOv2 [62]. See Tab. 6 for additional baselines using other architectures.

9

Table 4: Conditional image generation quality on CIFAR10. The best results are in gray box .
Applying LZN to generative models improves or matches RF on all metrics.

Algo. FID↓ sFID↓ IS↑ Precision↑ Recall↑ CMMD↓ Recon↓
RF 2.47 4.05 9.77 0.71 0.58 0.0253 0.69
RF+LZN 2.40 3.99 9.88 0.71 0.58 0.0229 0.38

5 Case Study 3: Conditional Generative Modeling and Classification

Approach (Fig. 3). Building on § 3, we consider X = {xi}ni=1 and Y = {yi}mi=1, where each xi

is a class label and yi is an image labeled as xki . In addition to the image encoder and decoder,
we introduce a label encoder-decoder pair. Since labels come from a finite set, both modules share
a matrix A ∈ Rq×c of label anchor points, where q is the latent dimension and c is the number
of classes. The encoder maps a one-hot label h to its anchor via Ah. The decoder recovers the
class ID of a latent g by first applying FM to obtain its anchor FMA (g; 1), and then computing its
corresponding class latent zone argmaxFMA (g; 1)

T
A, where FMA denotes FM over anchors in

A. The training objective extends that of § 3 by adding Align (X ,Y). After training, the model can
perform both conditional and unconditional generation, as well as classification by design. See § E.1
for detailed pseudocode of the training, generation, and classification processes.

Related work. Joint classification and conditional generation are often achieved by augmenting
generative models with classification losses or networks [60, 72], treating label inputs to the generator
and outputs from the classifier as separate components. In contrast, LZN unifies label inputs and
outputs within a shared latent space.

Results. Following the setting in § 3, we conduct experiments on CIFAR10. Image quality metrics
are shown in Tab. 4, and classification accuracies are shown in Tab. 3. Key observations are: (1)
LZN improves both image quality and reconstruction error. Similar to § 3, this confirms that LZN
latents capture useful features for generation. (2) LZN achieves classification accuracy on par with
SoTA. Tab. 3 includes SoTA classification accuracy from networks trained solely for classification.
The fact that LZN, which jointly performs generation and classification and differs significantly from
standard classification pipelines, can match SoTA performance is notable. Currently, LZN lags behind
the best CIFAR10 result by 1%, potentially due to architectural factors: we use the RF encoder (§ E)
without classification-specific optimization. With a better architecture design (as in other methods
in Tab. 3), LZN could likely improve further. (3) Joint training on generation and classification
improves both. This is evident from: (i) RF+LZN in Tab. 4 showing better generation quality than in
Tab. 1; and (ii) “RF+LZN” achieving higher classification accuracy than “RF+LZN (no gen)” in Tab. 3.
These results support our motivation from § 1 that different ML tasks can benefit from each other,
and demonstrate that LZN is a promising unified framework for achieving this synergy.

Due to space constraints, please refer to § E for more details on implementation, datasets, metrics,
and additional results such as generated images and ablation studies.

6 Limitations and Future Work

(1) Training efficiency. Training LZN requires backpropagating through the FM trajectory (§ 2.2.1),
which is computationally expensive. In § A, we describe several optimization strategies we imple-
mented to mitigate this cost. To further improve efficiency, we observe an interesting parallel between
training LZN and training large language models (LLMs) (see § G), suggesting that some efficient
training techniques developed for LLMs may be applicable here. (2) Pure generative modeling.
While LZN is fundamentally capable of generative modeling without any auxiliary losses (see § G),
in § 3, we only demonstrate how it can enhance existing generative models. Exploring how to fully
leverage LZN for standalone generative modeling remains an open direction for future work. (3)
Improving performance. Although LZN achieves competitive results in unsupervised representation
learning (§ 4) and classification (§ 5), there remains a gap to the SoTA. Bridging this gap is an
interesting direction. One promising avenue is to incorporate well-established improvements from
the literature that we have not yet adopted, such as more advanced architectural designs, as discussed
in § 4 and 5. (4) Multi-modality and multi-tasks. In this paper, we focus primarily on image-based
applications and at most two tasks simultaneously (§ 5). However, LZN is designed to be extensible:
by incorporating additional encoders and decoders, it can naturally support more modalities and
perform multiple tasks concurrently (Fig. 1). We leave this exploration to future work.

10

Acknowledgement

The authors would like to thank the anonymous reviewers for their helpful suggestions. Xuefei Ning
acknowledges the support by the National Natural Science Foundation of China (No. 62506197). In
addition, the authors gratefully acknowledge Cat Cookie and Cat Doudou for graciously lending their
adorable faces for Figs. 2 to 4 and 6.10

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Devansh Arpit, Aadyot Bhatnagar, Huan Wang, and Caiming Xiong. Momentum contrastive
autoencoder: Using contrastive learning for latent space distribution matching in wae. arXiv
preprint arXiv:2110.10303, 2021.

[3] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael
Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-
embedding predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15619–15629, 2023.

[4] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image trans-
formers. arXiv preprint arXiv:2106.08254, 2021.

[5] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PmLR, 2020.

[11] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

[12] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[13] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758,
2021.

[14] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9640–9649, 2021.

10From https://www.kaggle.com/datasets/fjxmlzn/cat-cookie-doudou released in [47].

11

https://www.kaggle.com/datasets/fjxmlzn/cat-cookie-doudou

[15] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8188–8197, 2020.

[16] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv
preprint arXiv:2307.08698, 2023.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[18] Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[20] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE international conference on computer vision,
pages 1422–1430, 2015.

[21] Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. Advances
in neural information processing systems, 32, 2019.

[22] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discrimi-
native unsupervised feature learning with convolutional neural networks. Advances in neural
information processing systems, 27, 2014.

[23] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first international conference on machine
learning, 2024.

[24] Michael Fuest, Pingchuan Ma, Ming Gui, Johannes Schusterbauer, Vincent Tao Hu, and
Bjorn Ommer. Diffusion models and representation learning: A survey. arXiv preprint
arXiv:2407.00783, 2024.

[25] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[26] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

[27] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[28] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[30] Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In Interna-
tional conference on machine learning, pages 4182–4192. PMLR, 2020.

[31] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

12

[32] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[33] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti,
and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9307–9315, 2024.

[34] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[35] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[36] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8110–8119, 2020.

[37] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[38] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[39] kuangliu. Train cifar10 with pytorch. https://github.com/kuangliu/pytorch-cifar,
2025.

[40] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

[41] Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances
in Neural Information Processing Systems, 37:63082–63109, 2024.

[42] Mufan Li, Mihai Nica, and Dan Roy. The neural covariance sde: Shaped infinite depth-
and-width networks at initialization. Advances in Neural Information Processing Systems,
35:10795–10808, 2022.

[43] Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan.
Mage: Masked generative encoder to unify representation learning and image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2142–2152, 2023.

[44] Tianhong Li, Dina Katabi, and Kaiming He. Return of unconditional generation: A self-
supervised representation generation method. Advances in Neural Information Processing
Systems, 37:125441–125468, 2024.

[45] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2308.03281, 2023.

[46] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[47] Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Dif-
ferentially private synthetic data via foundation model apis 1: Images. arXiv preprint
arXiv:2305.15560, 2023.

[48] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples
in generative adversarial networks. Advances in neural information processing systems, 31,
2018.

13

https://github.com/kuangliu/pytorch-cifar

[49] Zinan Lin, Vyas Sekar, and Giulia Fanti. Why spectral normalization stabilizes gans: Analysis
and improvements. Advances in neural information processing systems, 34:9625–9638, 2021.

[50] Zinan Lin, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh. Infogan-cr and modelcen-
trality: Self-supervised model training and selection for disentangling gans. In international
conference on machine learning, pages 6127–6139. PMLR, 2020.

[51] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[52] Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
image auto-regressive models with flow matching. arXiv preprint arXiv:2412.17153, 2024.

[53] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[54] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[55] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[56] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-
solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022.

[57] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant rep-
resentations. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6707–6717, 2020.

[58] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

[59] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European conference on computer vision, pages 69–84. Springer, 2016.

[60] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. In International conference on machine learning, pages 2642–2651.
PMLR, 2017.

[61] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[62] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[63] Druv Pai, Ziyang Wu Wu, Sam Buchanan, Yaodong Yu, and Yi Ma. Masked completion
via structured diffusion with white-box transformers. International Conference on Learning
Representations, 2023.

[64] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties
in gan evaluation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11410–11420, 2022.

[65] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2536–2544, 2016.

[66] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

14

[67] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[68] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[69] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[70] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on
machine learning, pages 8821–8831. Pmlr, 2021.

[71] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019.

[72] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

[73] Michael Sander, Pierre Ablin, and Gabriel Peyré. Do residual neural networks discretize
neural ordinary differential equations? Advances in Neural Information Processing Systems,
35:36520–36532, 2022.

[74] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9243–9252, 2020.

[75] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. pmlr, 2015.

[76] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[77] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[78] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[79] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[80] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16, pages 776–794. Springer, 2020.

[81] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in
neural information processing systems, 33:19667–19679, 2020.

[82] Geoffrey I. Webb. Occam’s Razor, pages 735–735. Springer US, Boston, MA, 2010.

[83] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 14668–14678, 2022.

[84] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3733–3742, 2018.

15

[85] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

[86] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3836–3847, 2023.

[87] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part III 14, pages 649–666. Springer, 2016.

[88] Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin,
Baosong Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text represen-
tation and reranking models for multilingual text retrieval. arXiv preprint arXiv:2407.19669,
2024.

[89] Lin Zhao, Tianchen Zhao, Zinan Lin, Xuefei Ning, Guohao Dai, Huazhong Yang, and Yu Wang.
Flasheval: Towards fast and accurate evaluation of text-to-image diffusion generative models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 16122–16131, 2024.

[90] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised
learning of visual embeddings. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6002–6012, 2019.

16

Appendix Contents

A More Details on Latent Computation (§ 2.2.1) 18

A.1 The Desired Properties . 18

A.2 More Implementation Details . 18

A.3 Efficiency Optimizations . 18

B More Details on Latent Alignment (§ 2.2.2) 19

B.1 More Implementation Details . 19

B.2 Efficiency Optimizations . 19

C More Details and Results on Case Study 1 19

C.1 Algorithm Pseudocode . 19

C.2 More Implementation Details . 20

C.3 More Experimental Settings . 20

C.4 More Results . 23

D More Details and Results on Case Study 2 29

D.1 Algorithm Pseudocode . 29

D.2 More Implementation Details . 29

D.3 More Experimental Settings . 29

D.4 More Results . 29

E More Details and Results on Case Study 3 32

E.1 Algorithm Pseudocode . 32

E.2 More Implementation Details . 32

E.3 More Experimental Settings . 33

E.4 More Results . 34

F Extended Discussions on Related Work 38

G Extended Discussions on Limitations and Future Work 38

17

A More Details on Latent Computation (§ 2.2.1)

A.1 The Desired Properties

In this section, we explain in more detail why the construction in § 2.2.1 (approximately) satisfies the
two desired properties.

• Prior distribution is Gaussian. By definition, the distribution of latent z ∼
Uniform {z1, . . . , zn} is induced by (1) drawing a ∼ Uniform {a1, . . . , an} and ϵ ∼ N (0, I),
(2) computing s1−g = (1− g)a+ gϵ, and (3) computing IFMx (s1−g; 0). In the above process,
s1−g ∼ π1−g by definition. Due to the property of FM discussed in § 2.2.1, IFMx (s1−g; 0) ∼ π0

when s1−g ∼ π1−g . Therefore, the latent z ∼ π0 = N (0, I).
• Disjoint latent zones. Each latent point z ∼ N (0, I) can be uniquely map to one of {a1, . . . , an}

through the defined FM. We define the latent zone of i-th sample as the set of latents that map to
ai: Zi = {z : FMx (z; 1) = ai}. The probability that the latent computed through Eq. (1) falls
in the incorrect latent zone can then be defined as P (IFMx (ai, ϵ; 0) ∈ Zj) for i ̸= j, where the
probability is over the randomness of ϵ ∼ N (0, I). We can see that this probability can be made
arbitrarily small by choosing a sufficiently small g. This is because that to make the latent fall in
the incorrect latent zone, we need to have ∥ϵ∥ on the scale of

∥∥∥ (1−g)(ai−aj)
g

∥∥∥, whose probability
→ 0 when g → 0. To make this intuition more precise, we give the closed form of this probability
for a toy one-dimensional case below.

Theorem 1. Assume that there are n = 2 samples x1, x2, with their anchor points a1 = −1, a2 = 1.
We have

P (IFMx (a1, ϵ; 0) ∈ Z2) = P (IFMx (a2, ϵ; 0) ∈ Z1) = Φ

(
g − 1

g

)
, (3)

where Φ is the CDF function of the standard Gaussian distribution.

Proof. With a slight abuse of notation, we define FMx (s; t1, t2) = s+
∫ t2
τ=t1

V (sτ , τ)dτ as following
the FM trajectory from t1 to t2. We generalize the latent zone definition above to all time steps as
the latents at time step t that map to the anchor point ai: Zt

i = {z : FMx (z; t, 1) = ai}. Due to
symmetry, we know that Zt

1 = (−∞, 0) and Zt
2 = (0,∞). Therefore, we have

P (IFMx (a1, ϵ; 0) ∈ Z2) = P (−(1− g) + gϵ > 0) = P

(
ϵ >

1− g

g

)
= Φ

(
g − 1

g

)
,

where Φ (·) is the CDF function of Gaussian distribution. Similarly, we can get that
P (IFMx (a2, ϵ; 0) ∈ Z1) = Φ

(
g−1
g

)
.

A.2 More Implementation Details

We find that in the training or inference of some tasks benefit from using a more concentrated latent
distribution:

zi = C (x1, . . . , xn)i ≜ IFMx (ai, αϵi; 0) , (4)
where ϵi ∼ N (0, I) and α ∈ [0, 1) is the scaling factor. Similar techniques have been used in prior
generative models for improving sample quality [35, 37, 6, 81].

A.3 Efficiency Optimizations

We introduce a series of efficiency optimization techniques so that the training of LZN can scale up to
large models and large batch sizes.

Minibatch approximation (reducing memory and computation cost). By design, latent computa-
tion requires using all samples, which is infeasible for large datasets. In practice, we approximate
this by using only the current minibatch as x1, . . . , xn, which significantly reduces memory and
computation cost.

Note that this approximation has nuanced implications on the two desired properties discussed in
§ 2.2.1.

18

• Minibatch approximation still preserves the Gaussian prior. LZN ensures that the latent
distribution within each minibatch is approximately N (0, I). As a result, the overall latent
distribution becomes a mixture of Gaussians with the same parameters, which is still N (0, I).
Therefore, the global prior remains valid under the minibatch approximation.
• However, minibatch approximation violates the disjoint zone property. This is because the

latent zones of each sample now depends on other samples in the same batch, which could change
across different batches. Despite this approximation, our experiments show it performs well.
• In generative modeling (§ 3 and 5), the latent does not need perfect zone disjointness—as long

as it provides some information about the input sample, it can help reduce the variance needed
to learn by the generative model (rectified flow in our case) and improve the generation quality.

• In representation learning (§ 4), latent alignment occurs within a single batch. Thus, inconsis-
tency across batches is irrelevant.

• In classification (§ 5), we only need to map samples within a single batch to the latent zones of
labels. Thus, inconsistency across batches is irrelevant.

That said, larger batch sizes can improve the accuracy of latent zones and thus improve perfor-
mance (§ 5).

Custom gradient checkpointing (reducing memory cost). In PyTorch, forward passes store interme-
diate results for use in backpropagation, incurring significant memory cost. Gradient checkpointing11

reduces memory usage (with the cost of extra computation) by selectively discarding intermediates
in the forward pass and recomputing them during the backward pass. This technique is typically
applied within neural networks. In our case, we discover that the main memory bottleneck lies in
latent computation, which has memory complexity O(n2qr), where n is the number of samples, q
the latent dimension, and r the solver steps. We design a custom strategy that skips storing velocity
computations and retains only the latent trajectories st. This reduces memory complexity to O(nqr),
which makes the training far more manageable.

Latent parallelism (making training scalable with multi-GPU). For the same reason discussed
above, the main computation overhead also lies in latent computation. A natural idea is to parallelize
it with multi-GPU. We partition the data samples across GPUs, and each GPU computes anchor
points for its assigned subset. These anchor points are then broadcast to all GPUs, allowing each
to compute latents for its own samples using the complete set of anchors. To ensure that gradients
can propagate back correctly through the anchor points to the originating GPUs, we use the undoc-
umented PyTorch function torch.distributed.nn.functional.all_gather, which—unlike
the standard torch.distributed.all_gather—maintains gradient flow to the original sources.

B More Details on Latent Alignment (§ 2.2.2)

B.1 More Implementation Details

Optionally, we can apply a logarithm to the assignment probability to make the loss resemble a
standard cross-entropy formulation. In that case, our proposed alignment objective is:

Align (X ,Y) ≜ max

m∑
i=1

max
t∈{tu,...,tr}

logP
(
aki
|sit

)
. (5)

B.2 Efficiency Optimizations

We apply the same efficiency optimizations in § A.3 in latent alignment.

C More Details and Results on Case Study 1

C.1 Algorithm Pseudocode

Fig. 7 and Fig. 8 show side-by-side comparisons of the training and generation processes of RF and
RF+LZN.

11https://pytorch.org/docs/stable/checkpoint.html

19

https://pytorch.org/docs/stable/checkpoint.html

Algorithm 1: RF training

Input :Training set: X
Decoder: Dx

Number of iterations: T
Batch size: B

1 for iteration← 1, . . . , T do
2 x1, . . . , xB ← Draw samples from X
3 ϵ1, . . . , ϵB ← Gaussian noise
4 t1, . . . , tB ← Random RF timesteps
5 ξi ← (1− ti)ϵi + tixi

6 Training using Dx (ξi)

Algorithm 2: RF+LZN training

Input :Training set: X
Decoder: Dx

Encoder: Ex (used by C)
Number of iterations: T
Batch size: B

1 for iteration← 1, . . . , T do
2 x1, . . . , xB ← Draw samples from X
3 z1, . . . , zB ← C (x1, . . . , xB)

4 ϵ1, . . . , ϵB ← Gaussian noise
5 t1, . . . , tB ← Random RF timesteps
6 ξi ← (1− ti)ϵi + tixi

7 Training using Dx(ξi; zi)

Figure 7: Comparison between the training processes of RF and RF+LZN. Left: A simplified
illustration of the standard RF [53] training process. In each iteration, a batch of real samples and a
batch of Gaussian noise are drawn and interpolated to produce noisy inputs, which are then passed
through the decoder network to compute the loss. Right: A simplified illustration of the RF+LZN
training process. The key differences are highlighted in gray: we compute LZN latents for the samples
using the method in § 2.2.1, and provide these latents as an additional input to the RF decoder.

Algorithm 3: RF generation

Input :Decoder: Dx

1 ξ ← Gaussian noise
2 Generated sample← Dx (ξ)

Algorithm 4: RF+LZN generation

Input :Decoder: Dx

1 ξ ← Gaussian noise
2 z ← Gaussian noise
3 Generated sample← Dx(ξ; z)

Figure 8: Comparison between the generation processes of RF and RF+LZN. Left: A simple
illustration of the standard RF generation process [53]. The decoder takes Gaussian noise as input
and generates a sample. The actual process is iterative, but we leave out the steps for simplicity and
only show the starting input (Gaussian noise) and the final output (the generated image). Right: A
simple illustration of the RF+LZN generation process. The main differences are shown in gray: we
sample extra LZN latents from Gaussian noise and use them as additional inputs to the RF decoder
during the iterative generation process.

C.2 More Implementation Details

Architecture.

• Decoder. The only change to the RF architecture [53] is concatenating the LZN latent with the
timestep embedding.

• Encoder. We extend the UNet encoder in RF [53] by connecting the output of each ResNet block
with a latent transformation block. The sum of the outputs of the latent transformation blocks
forms the LZN latent. Each latent transformation block consists of: (1) a 1×1 convolution that
projects the ResNet output to 20 channels, reducing dimensionality; and (2) a small MLP with a
200-dimensional hidden layer that outputs the latent from the flattened convolution output.

C.3 More Experimental Settings

Datasets.

• CIFAR10 (32× 32) [38] contains 50000 training images and 10000 test images of 10 classes of
objects. We only utilize the training set for this experiment.

• AFHQ-Cat (256× 256) [15] contains 5153 catimages.

20

• CelebA-HQ (256× 256) [34] contains 30000 face images.
• LSUN-Bedroom (256× 256) [85] contains 3033042 bedroom images.

Metrics.

• FID [31] and sFID [58] evaluate the similarity between real and generated images by projecting
both into the latent space of a pretrained network (e.g., Inception-v3 [79]), fitting each set of latents
with Gaussian distributions, and computing their Wasserstein-2 distance. The key difference
between FID and sFID is the feature layer used: FID uses pooled features, while sFID uses
intermediate features, making it more sensitive to spatial details.

• Inception score (IS) [72] measures image quality by assessing both the quality of each image
(how confidently a classifier predicts a class) and diversity across all images (coverage over
different classes). Since the classifier is trained on ImageNet [17], IS is best suited for natural
image datasets like CIFAR10. We report IS for all datasets for completeness.

• Precision and recall [40] evaluate the quality and coverage of generated images. Intuitively,
precision measures the fraction of generated images that are close to real ones, while recall
measures the fraction of real images that are close to the generated ones.

• CMMD [33] measure the MMD distances between the CLIP embeddings of the real images and
generated images. Compared to FID, it is reported to align better with human preference and have
better sample efficiency.

• Reconstruction error measures how well a generative model can reconstruct an input image.
This reflects the model’s representational power and is crucial for applications like image editing,
where edits are made by modifying the image’s latent representation []. For RF, we first apply
the inverse ODE to map the image to its latent representation, then use the forward ODE to
reconstruct the image, and compute the ℓ2 distance between the original and reconstructed images.
For RF+LZN, we add an initial step: compute the image’s LZN latent C (X) and feed it into the
RF latent computation process as an additional input.

Following the convention [53, 76, 48, 89, 49], the metrics are all computed using the training set of
the dataset.

For FID, sFID, IS, precision, recall, and CMMD, we subsample the training set and generate the
same number of samples to compute the metrics. The number of samples are:

• CIFAR10: 50000 (the whole training set).
• AFHQ-Cat: 5120, the largest multiple of the batch size (256) that is less than or equal to the

training set size (5153).
• CelebA-HQ: 29952, the largest multiple of the batch size (256) that is less than or equal to the

training set size (30000).
• LSUN-Bedroom: 29952, the largest multiple of the batch size (256) that is less than or equal to

30000. We limit the number of samples to 30000 so that the computation cost of the metrics are
reasonable.

For reconstruction error, we randomly sample a batch of images (2000 for CIFAR10 and 256 for the
other datasets) from the training set. Each image is reconstructed 20 times (note that the LZN latents
C (X) have randomness). We report the average metric over all reconstructions.

Note that for all the random subsampling procedures mentioned above, we ensure the sampled sets
are consistent between RF and RF+LZN, so that the resulting metrics are directly comparable.

Sampler. RF requires a sampler to numerically solve the ODE (integral) trajectory for sample
generation. For both RF and RF+LZN, we use the RK45 sampler from RF [53], which adaptively
determines the number of steps. In § C.4, we also analyze the effect of varying the number of
sampling steps using the Euler sampler [].

Hyperparameters.

• CIFAR10
• RF:
• Batch size: 2000
• Optimizer: Adam
• Decoder learning rate: 0.001

21

• Gradient clipping: 1.0
• Number of parameters in decoder: 61804419
• RF+LZN:
• Batch size: 2000
• Optimizer: Adam
• Decoder learning rate: 0.001
• Encoder learning rate: 0.000025
• Gradient clipping: 1.0
• Latent dimension: 200
• Number of parameters in decoder: 61906819
• Number of parameters in encoder: 49790260

• AFHQ-Cat
• RF:
• Batch size: 256
• Optimizer: Adam
• Decoder learning rate: 0.0002
• Gradient clipping: 1.0
• Number of parameters in decoder: 65574549
• RF+LZN:
• Batch size: 256
• Optimizer: Adam
• Decoder learning rate: 0.0002
• Encoder learning rate: 0.000002
• Gradient clipping: 1.0
• Latent dimension: 200
• Number of parameters in decoder: 65676949
• Number of parameters in encoder: 87768896

• CelebA-HQ
• RF:
• Batch size: 256
• Optimizer: Adam
• Decoder learning rate: 0.0002
• Gradient clipping: 1.0
• Number of parameters in decoder: 65574549
• RF+LZN:
• Batch size: 256
• Optimizer: Adam
• Decoder learning rate: 0.0002
• Encoder learning rate: 0.000004
• Gradient clipping: 1.0
• Latent dimension: 200
• Number of parameters in decoder: 65676949
• Number of parameters in encoder: 87768896

• LSUN-Bedroom
• RF:
• Batch size: 256
• Optimizer: Adam
• Decoder learning rate: 0.0002
• Gradient clipping: 1.0
• Number of parameters in decoder: 65574549
• RF+LZN:
• Batch size: 256

22

Figure 9: Generated images of RF on CIFAR10.

• Optimizer: Adam
• Decoder learning rate: 0.0002
• Encoder learning rate: 0.000002
• Gradient clipping: 1.0
• Latent dimension: 200
• Number of parameters in decoder: 65676949
• Number of parameters in encoder: 87768896

Computation cost. Excluding the computation cost of periodic evaluation (i.e., only counting the
computation cost of model training), each RF+LZN experiment takes:

• CIFAR10: 8 hours on 16 A100 (40 GB) GPUs.
• AFHQ-Cat: 10 hours on 32 A100 (40 GB) GPUs.
• CelebA-HQ: 58 hours on 32 A100 (40 GB) GPUs.
• LSUN-Bedroom: 341 hours on 32 A100 (40 GB) GPUs.

C.4 More Results

Generated images. The generated images of RF and RF+LZN are in Figs. 9 to 16.

Ablation studies on FID implementation. It is known that subtle differences in FID implementation
can result in different results [64]. In our main experiments, we use the implementation in consistency
models [76]. In Tab. 5, we additionally show the FID using two other implementations: RF [53] and
clean FID [64]. We can see that, while the numbers are different, the relative ranking across all three
implementations is consistent. Especially, RF+LZN achieves the best FID in three out of four datasets.

Ablation studies on sampling steps. In this experiment, we use the Euler sampler with varying
numbers of sampling steps. As shown in Fig. 17, RF+LZN generally achieves better FID than the RF
baseline across most settings. Notably, in the only case where RF+LZN performs worse than RF in

23

Figure 10: Generated images of RF+LZN on CIFAR10.

Table 5: FID with different implementations for unconditional image generation. “CM” denotes
consistency models [76]; “RF” denotes Rectified Flow [53]; “clean” denotes clean FID [64]. The
best results are in gray box .

Algo. CIFAR10 (32× 32) AFHQ-Cat (256× 256)
FID (clean)↓ FID (RF)↓ FID (CM)↓ FID (clean)↓ FID (RF)↓ FID (CM)↓

RF 3.18 2.77 2.76 5.99 6.20 6.08
RF+LZN 3.05 2.61 2.59 5.66 5.69 5.68

Algo. CelebA-HQ (256× 256) LSUN-Bedroom (256× 256)
FID (clean)↓ FID (RF)↓ FID (CM)↓ FID (clean)↓ FID (RF)↓ FID (CM)↓

RF 7.10 7.00 6.95 6.39 6.25 6.25
RF+LZN 7.31 7.23 7.17 5.88 5.87 5.95

Tab. 1, we observe that the underperformance occurs only at the highest number of sampling steps in
the Euler sampler (Fig. 17c).

24

Figure 11: Generated images of RF on AFHQ-Cat.

Figure 12: Generated images of RF+LZN on AFHQ-Cat.

25

Figure 13: Generated images of RF on CelebA-HQ.

Figure 14: Generated images of RF+LZN on CelebA-HQ.

26

Figure 15: Generated images of RF on LSUN-Bedroom.

Figure 16: Generated images of RF+LZN on LSUN-Bedroom.

27

101 102 103

NFE

101

3 × 100

4 × 100

6 × 100

FI
D

Rectified Flow
Rectified Flow + LZN

(a) CIFAR10.

101 102 103

NFE

101

6 × 100

2 × 101

3 × 101

FI
D

Rectified Flow
Rectified Flow + LZN

(b) AFHQ-Cat.

101 102 103

NFE

101

FI
D

Rectified Flow
Rectified Flow + LZN

(c) CelebA-HQ.

101 102 103

NFE

101

6 × 100

2 × 101

FI
D

Rectified Flow
Rectified Flow + LZN

(d) LSUN-Bedroom.

Figure 17: FID vs. number of sampling steps in the Euler sampler. RF+LZN outperforms RF in most
cases.

28

D More Details and Results on Case Study 2

D.1 Algorithm Pseudocode

Alg. 5 shows the pseudocode of the training process.

After training, the encoder Ex can be used to obtain image representations. We provide several
strategies for extracting these representations. Please see § D.4 for details.

D.2 More Implementation Details

Architecture. To remain consistent with prior work [28, 10, 26], we use the ResNet-50 architecture
[29] as the encoder for LZN. The only modification we make is replacing all batch normalization
layers with group normalization. However, our early experiments indicate that this change does not
lead to significant performance differences.

For the projection head following the ResNet-50 output, we use an MLP with one hidden layer, as in
[10, 11].

Data augmentation. We follow the same data augmentation strategy as in [11].

Representation. Following prior work [10, 11], after training the ResNet-50, we discard the
projection head and use only the ResNet-50 backbone to extract representations for training the linear
classifier. As a result, obtaining representations from LZN in this way does not require going through
the LZN latent computation process C, and thus has the same computational efficiency as baseline
methods.

Objective. We use the version with log (Eq. (5)).

D.3 More Experimental Settings

Datasets. We use the ImageNet dataset, which contains 1281167 training images and 50000
validation images. LZN is trained on the training set, and classification accuracy is evaluated on the
validation set.

Hyperparameters.

• Batch size: 8192
• Optimizer: Adam
• Learning rate: 8e-4
• Gradient clipping: 1.0
• Latent dimension: 256
• Number of parameters: 24032832
• α: 0.45

Computation cost. Excluding the computation cost of periodic evaluation (i.e., only counting the
computation cost of model training), each LZN experiment takes 1800 hours on 128 A100 (40 GB)
GPUs.

D.4 More Results

More baselines. Tab. 6 shows the result with more baselines that are not using the ResNet-50
architecture.

Visualizing the learned representations. We take images from randomly selected 20 classes from
the validation set of ImageNet and computed their embeddings using the trained LZN model. We
chose the validation set to ensure that the results are not influenced by training set overfitting. We
then projected these embeddings into a 2D space using t-SNE–a widely used method for visualizing
high-dimensional representations, following seminal works such as SimCLR [10]. The resulting

12Note that we use the term contrastive learning broadly to refer not only to methods employing the traditional
contrastive loss, but to all approaches that encourage relevant images to share similar representations; see § 4.

29

Algorithm 5: Unsupervised representation learning with LZN

Input :Training set: X
Encoder: Ex

Number of iterations: T
Batch size: B

1 for iteration← 1, . . . , T do
2 x1, . . . , xB ← Draw samples from X
3 x′

i, x
′′
i ← Two random augmentations of xi

4 Training Ex using Align ({x′
1, . . . , x

′
B} , {x′′

1 , . . . , x
′′
B})

Table 6: Classification accuracy on ImageNet by training a linear classifier on the unsupervised
representations. Methods with § are based on contrastive learning.12 The horizontal line separates
baselines that perform worse or better than our LZN. “R” means “ResNet”.

Algorithm Architecture Top-1 Acc↑ Top-5 Acc↑
Colorization [87] R101 39.6 [28] -

Jigsaw [59] R50w2× 44.6 [28] -
Exemplar [22] R50w3× 46.0 [28] -

DeepCluster [8] VGG 48.4 [28] -
CPC v1§ [61] R101 48.7 [28] -

RelativePosition [20] R50w2× 51.4 [28] -
InstDisc§ [84] R50 54.0 [28] -
Rotation [25] Rv50w4× 55.4 [28] -

BigBiGAN [21] R50 56.6 [28] -
LocalAgg§ [90] R50 58.8 [28] -

MoCo§ [28] R50 60.2 [10] -
BigBiGAN [21] Rv50w4× 61.3 [28] 81.9 [10]

PIRL§ [57] R50 63.6 [10] -
CPC v2§ [30] R50 63.8 [10] 85.3 [10]
CMC§ [80] R50 66.2 [26] 87.0 [26]

SimSiam§[13] R50 68.1 [13] -
SimCLR§ [10] R50 69.3 [10] 89.0 [10]
MoCo v2§ [12] R50 71.7 [12] -

SimCLR v2§ [11] R50 71.7 [11] -
BYOL§ [26] R50 74.3 [26] 91.6 [26]
DINO§ [9] R50 75.3 [9] -
DINO§ [9] ViT-S 77.0 [9] -
DINO§ [9] ViT-B/16 78.2 [9] -
DINO§ [9] ViT-S/8 79.7 [9] -
DINO§ [9] ViT-B/8 80.1 [9] -
I-JPEA [3] ViT-B/16 72.9 [3] -
I-JPEA [3] ViT-L/16 77.5 [3] -
I-JPEA [3] ViT-H/14 79.3 [3] -
I-JPEA [3] ViT-H/16448 81.1 [3] -

LZN R50 69.5 89.3

t-SNE plot is in Fig. 18. We can see that the samples from different classes are well-clustered. This
suggests LZN learns meaningful image representations.

Ablation studies on representation choice. Prior work [10, 11] has shown that the choice of feature
extraction layer significantly affects downstream performance. In particular, removing the projection
head often improves results. Motivated by this, we explore various feature extraction strategies for
LZN, which offers more flexibility due to its unique latent computation process (§ 2.2.1). Specifically,
we compare the following methods:

• With latent. Use the latent representation from LZN (see § 2.2.1) to train the classifier.
• With latent (α = 0). Same as above but with α = 0 in the latent computation.
• With head. Use the anchor point (i.e., encoder output before FM computation).
• Without head. Use the ResNet backbone output (before the projection head).

30

−20 0 20 40

−30

−20

−10

0

10

20

30

993
859
298
553
672
971
27
231
306
706
496
558
784
239
578
55
906
175
14
77

Figure 18: t-SNE visualization of LZN representations projected into 2D for 20 randomly selected
ImageNet validation classes. Images from the same class form distinct clusters, indicating that LZN
learns meaningful image representations.

The first two methods are specific to LZN, while the last two follow the design commonly used in
prior contrastive learning work [10, 11].

The results are shown in Fig. 19. We observe the following:

• LZN latent achieves the lowest prediction accuracy. As discussed in § A.2, the LZN latents are
reliable only when computed over the full dataset. However, for efficiency, both training and
inference rely on minibatches to approximate the latent representations. This approximation
increases the size of the latent zones, leading to potential overlap between the zones of different
samples across batches, which inevitably degrades downstream classification performance.

• In comparison, LZN with α = 0 yields significantly higher accuracy. This improvement can be
attributed to the reduced likelihood of overlap between latent zones when α = 0, making the
resulting representations more distinct and less noisy.

• The final two methods, “with head” and “without head”, do not involve latent computation and
are therefore more efficient. Consistent with findings from prior contrastive learning studies [10],
we observe that “without head” performs substantially better. As explained in [10], the projection
head often discards important information—such as types of data augmentation—in order to
minimize the training loss. In contrast, layers preceding the head might retain richer and more
discriminative features, which are more useful for downstream classification tasks.

Ablation studies on the number of training steps. Fig. 20 shows classification accuracy over
training iterations. Accuracy continues to improve rapidly at the end of training, suggesting that with
more training, the gap between LZN and the SoTA could be further reduced.

31

W/ latent W/ head W/ latent
(α= 0)

W/o head

Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
p-

1
ac

cu
ra

cy

11.9

54.9 55.9

65.6

Figure 19: LZN’s linear classification accuracy with different feature extraction methods. Note that
this experiment uses fewer iterations (1060000) than the main experiment (5000000) and omits data
augmentation when training the linear classifier (used in the main experiment), so the accuracies are
lower than the main experiment.

0 1 2 3 4 5
Iterations 1e6

0.58

0.60

0.62

0.64

0.66

0.68

0.70

To
p-

1
ac

cu
ra

cy

Figure 20: LZN’s linear classification accuracy vs. training iteration. The accuracy is still improving
at a fast rate at the end of training. More training might further improve the result.

E More Details and Results on Case Study 3

E.1 Algorithm Pseudocode

Alg. 6, Fig. 21, and Alg. 9 show the algorithm pseudocode of the training, generation, and classifica-
tion process.

E.2 More Implementation Details

Architecture.

• Image decoder. For RF, we modify the original architecture [53] to include a one-hot encoding
of the class label as an additional input, concatenated with the timestep embedding. For RF+LZN,
we apply the same modification on top of the architecture described in § C. For unconditional
generation, this one-hot encoding is deterministically derived from the LZN latent: given a LZN
latent, we use the class label decoder to predict the class and then encode it as a one-hot vector. As
a result, the decoder’s output remains fully determined by the LZN and RF latents, consistent with
§ 3. For conditional generation, this one-hot encoding is given as a condition, and LZN latents are
sampled from the corresponding latent zone (as described in § 2.2.1).

• Image encoder. Same as that of § C.

Label FM. The method in § 2.2.2 implicitly assumes a uniform distribution over class labels.
However, due to sampling randomness during training, each batch may have an imbalanced class

32

Algorithm 6: RF+LZN training (with class labels)

Input :Training set: labels X and images Y
Image decoder: Dy

Image encoder: Ey (used by C)
Label anchors: A (used by Align)
Number of iterations: T
Batch size: B

1 for iteration← 1, . . . , T do
2 y1, . . . , yB ← Draw images from Y
3 z1, . . . , zB ← C (y1, . . . , yB)
4 ϵ1, . . . , ϵB ← Gaussian noise
5 t1, . . . , tB ← Random RF timesteps
6 ξi ← (1− ti)ϵi + tiyi
7 Training using Align (X , {y1, . . . , yB}) and RF loss on Dy (ξi; zi) (a weighted loss between

the two)

Algorithm 7: RF+LZN generation (uncondi-
tional)

Input :Image decoder: Dy

1 ξ ← Gaussian noise
2 z ← Gaussian noise
3 Generated sample← Dy (ξ; z)

Algorithm 8: RF+LZN generation (uncondi-
tional)

Input :Image decoder: Dy

Label set: c1, . . . , cn
Class ID: k (i.e., the class is ck)

1 ξ ← Gaussian noise
2 z ← C ({c1, . . . , cn})k
3 Generated sample← Dy (ξ; z)

Figure 21: The generation process of RF+LZN (with class labels). In this case, RF+LZN can
simultaneously support unconditional and conditional generation. Left: Unconditional generation,
where the LZN latent is drawn from the prior Gaussian distribution, which is exactly the same as
Fig. 8. Right: Conditional generation, where the LZN latent is drawn from the latent zone of the
corresponding class. The changes on top of unconditional generation are highlighted in gray.

distribution. To address this, we modify the π1 distribution when computing FMx (·) to be a weighted
mixture of Dirac delta functions centered at Ex (xi), with weights corresponding to the fraction of
class xi samples in the batch. During testing, we revert to a uniform prior, as the true class distribution
of the batch is not available.

Objective. We use the version without log (Eq. (2)). We also tried the version with log (Eq. (5)) and
did not observe a large difference in results.

E.3 More Experimental Settings

Datasets. We use the CIFAR10 dataset discussed in § C.

Metrics. In addition to the metrics discussed in § C, we evaluate on CIFAR10 classification accuracy.
The accuracy is evaluated on CIFAR10 test set.

Sampler. Same as § C.

Hyperparameters.

• CIFAR10
• RF:
• Batch size: 2000
• Optimizer: Adam
• Decoder learning rate: 0.002

33

Algorithm 9: RF+LZN classification

Input :Image encoder: Dx

Label decoder: Dx

Images: y1, . . . , yB
1 z1, . . . , zB ← C (y1, . . . , yB)
2 ci ← Dx (zi)

Table 7: FID with different implementations for conditional image generation on CIFAR10. “CM”
denotes consistency models [76]; “RF” denotes Rectified Flow [53]; “clean” denotes clean FID [64].
The best results are in gray box .

Algo. FID (clean)↓ FID (RF)↓ FID (CM)↓
RF 2.85 2.50 2.47
RF+LZN 2.70 2.42 2.40

• Gradient clipping: 1.0
• Number of parameters in decoder: 61809539
• RF+LZN:
• Batch size: 2000
• Optimizer: Adam
• Decoder learning rate: 0.002
• Encoder learning rate: 0.00005
• Label learning rate: 0.0001
• Gradient clipping: 1.0
• Latent dimension: 200
• Number of parameters in decoder: 61911939
• Number of parameters in encoder: 49790260

Computation cost. Excluding the computation cost of periodic evaluation (i.e., only counting the
computation cost of model training), each RF+LZN experiment takes 31 hours on 16 A100 (40 GB)
GPUs.

E.4 More Results

Generated images. The generated images of RF and RF+LZN are in Figs. 22 and 23.

Ablation studies on FID implementation. Same as § C, we present the FID scores using three
different implementations in Tab. 7. We see that, while the numbers are different, the relative ranking
across all three implementations is consistent. Especially, RF+LZN achieves the best FID in all
implementations.

Ablation studies on sampling steps. Following the experimental settings in § C, we use the Euler
sampler with varying numbers of sampling steps. As shown in Fig. 24, RF+LZN generally achieves
better FID than the RF baseline across most settings.

Ablation studies on classification techniques. Here, we discuss several techniques for improving
the classification results.

• Recall that latent computation (Eq. (1)) includes randomness from ϵi because each sample
corresponds to a latent zone, not a single point. Empirically, for classification tasks, using the
“center” of the latent zone yields better performance. Concretely, we set α = 0 in Eq. (4) when
computing latents. This is intuitive, as the center is likely farther from zone boundaries and better
represents the sample.

• § A.3 discusses that during training, we use a batch of samples rather than all samples to estimate
latents for efficiency. However, during inference, where gradient computation is unnecessary and
thus the overhead of large batch sizes is less critical, we can use a larger batch size to improve
performance.

34

Figure 22: Generated images of RF on CIFAR10 (conditional generation). Every 5 rows corresponds
to one class in CIFAR10.

Fig. 25 shows that increasing the batch size and decreasing α improve the classification accuracy.
The best setting improves the default setting (batch size= 2000 and α = 1.0) by 2.9%.

Ablation studies on latent alignment hyperparameter. In latent alignment (§ 2.2.2), we introduced
a hyperparameter u that controls how many time steps are excluded from the latent alignment
objective. In our main experiments, we set u = 20 (out of a total of 100 steps). Here, we conduct
an ablation study by reducing u to 5 (i.e., 4× smaller). The results are shown in Tab. 8. We can see
that u does not affect the results much, and the performance remains better than the baseline RF
across most metrics. This is expected. Unlike common hyperparameters (such as loss weights) that
influence the optimal solution, u does not alter the optimal solution, which is the perfect alignment

35

Figure 23: Generated images of RF+LZN on CIFAR10(conditional generation). Every 5 rows corre-
sponds to one class in CIFAR10.

between two latent zones. Instead, this parameter is introduced solely to help avoid getting stuck
in local optima (§ 2.2.2). We expect that any small but non-zero value of u should be sufficient in
practice.

36

101 102 103

NFE

101

3 × 100

4 × 100

6 × 100

FI
D

Rectified Flow
Rectified Flow + LZN

Figure 24: FID vs. number of sampling steps in the Euler sampler on CIFAR10 (conditional
generation). RF+LZN outperforms RF in most cases.

1.0 0.8 0.6 0.4 0.2 0.0
α

2000

4000

8000

10000

Ba
tc

h
siz

e

91.57 93.35 94.16 94.30 94.29 94.33

92.69 93.85 94.25 94.33 94.34 94.40

93.70 94.24 94.36 94.31 94.40 94.45

93.85 94.28 94.44 94.47 94.45 94.44

0.920

0.925

0.930

0.935

0.940

Accuracy

Figure 25: Classification accuracy with different hyperparameters on CIFAR10. Generally, increasing
the batch size and decreasing α improve the classification accuracy.

Table 8: Conditional image generation quality and classification accuracy on CIFAR10. The best
results are in gray box . The hyperparameter u does not impact the results much.

Algo. FID↓ sFID↓ IS↑ Precision↑ Recall↑ Recon↓ Accuracy↑
RF 2.47 4.05 9.77 0.71 0.58 0.69 -
RF+LZN (u = 20) 2.40 3.99 9.88 0.71 0.58 0.38 94.47
RF+LZN (u = 5) 2.39 3.99 9.76 0.71 0.58 0.36 94.42

37

F Extended Discussions on Related Work

[16] proposes to conduct flow matching in the latent space. However, it has quite different goals and
techniques from LZN.

• Goals. The goal of [16] is to improve generation tasks. In contrast, our goal is more ambitious: to
develop a unified framework that supports generation, representation learning, and classification.
This broader scope requires a different design philosophy and technical approach, as detailed
next.

• Techniques. [16] applies flow matching to the latent space of a pre-trained Stable Diffusion
autoencoder, which is reasonable when focusing solely on generation. However, such a latent
space is high-dimensional and retains spatial structure, limiting its suitability for classification
and compact representation learning. To support our broader objectives, we introduce several
novel techniques:
• Match a discrete distribution (i.e., the anchors) to a continuous one, as opposed to a continuous-

to-continuous distribution matching in [16].
• Use an adaptive latent space, since our encoder and decoder are trained end-to-end, as opposed

to using a fixed pre-trained autoencoder and fixed latent space in [16].
• Numerically solve the flow directly, as opposed to training an additional model to learn the flow

in [16].
• Latent alignment between different data types (e.g., image and label), which is new in our paper.

G Extended Discussions on Limitations and Future Work

Inference efficiency. It is important to note that while the training cost of LZN might be high, at
inference time, LZN is often as efficient as existing approaches.

• For image generation (§ 3 and 5), we do not need to compute the latent during inference. Instead,
latents are sampled from the Gaussian prior and passed directly to the decoder, making the
generation speed comparable to the base model.

• For representation learning (§ 4), we find that dropping the final encoder layers during inference
improves performance (§ D.4), similar to the observation in prior contrastive learning methods
[10]. In this case, inference involves simply passing an image through the encoder without the
latent computation process (§ 2.2.1), just like in traditional contrastive learning methods.

Training efficiency. The main training bottleneck stems from the quadratic cost with respect to the
batch size. Notably, this is also the case for many contrastive learning methods, including the seminal
works MoCo [28] and SimCLR [10], which compute pairwise similarities between all examples in a
batch.

The parallel between LLM training and LZN training. We observe an interesting parallel between
the training of LLMs and LZN. Specifically, in LLM training, computing attention weights requires
O
(
c2dv

)
, where c is the context length, d is the attention dimension, and v is the number of layers.

In LZN, computing the latents (§ 2.2.1) requires O(n2qr), where n is the number of samples in a
batch, q is the latent dimension, and r is the number of solver steps. Several parallels emerge:

• Context length in LLMs (c)↔ Number of samples in LZN (n)
• Attention dimension in LLMs (d)↔ Latent dimension in LZN (q)
• Number of layers in LLMs (v)↔ Number of solver steps in LZN (r)

Not only do these parameter pairs affect the time complexity in similar ways, but their computation
flows are also analogous: in LLMs, the pairwise inner product of token features is computed to derive
attention weights, and these weights are computed sequentially across layers. Similarly, in LZN, the
pairwise distances between intermediate anchor points of samples are computed to derive velocity,
and this velocity is updated sequentially across solver steps.

While LLM training is known to be computationally expensive, recent advances have significantly
improved its efficiency. Given the structural similarities, we expect that such advances in LLM
training could be adapted to enhance the training efficiency of LZN as well.

38

Using LZN solely to implement generative modeling. In theory, LZN can be used solely for generative
modeling. By construction (§ 3), if the decoder is trained to map latents to the corresponding data
perfectly, then the generative distribution of LZN is exactly 1

n

∑n
i=1 δ(s − xi), i.e., the empirical

distribution of the training set. We explored this approach in our early experiments. It performs well
on simple datasets such as MNIST [18], but generates blurry images on more complex datasets such
as CIFAR10. We hypothesize that this may be due to the minibatch approximation (§ A.3), which can
break the disjoint latent property, and/or the strict requirement that latent zones have no gaps between
them. We leave a deeper exploration of this direction to future work.

Societal impacts. Since LZN can be used to improve ML models, it has the potential for both
beneficial and harmful applications. Positive use cases include creative content generation and
improved information retrieval, while negative applications may involve the creation of fake or
misleading content.

39

	Introduction
	Latent Zoning Network (LZN)
	Overall Framework
	Implementation of Atomic Operations
	Latent Computation
	Latent Alignment

	Decoder
	Relationships to Alternatives
	Scope of Experiments

	Case Study 1: Unconditional Generative Modeling
	Case Study 2: Unsupervised Representation Learning
	Case Study 3: Conditional Generative Modeling and Classification
	Limitations and Future Work
	More Details on Latent Computation (sec:lznlatentcomputation)
	The Desired Properties
	More Implementation Details
	Efficiency Optimizations

	More Details on Latent Alignment (sec:lznlatentalignment)
	More Implementation Details
	Efficiency Optimizations

	More Details and Results on Case Study 1
	Algorithm Pseudocode
	More Implementation Details
	More Experimental Settings
	More Results

	More Details and Results on Case Study 2
	Algorithm Pseudocode
	More Implementation Details
	More Experimental Settings
	More Results

	More Details and Results on Case Study 3
	Algorithm Pseudocode
	More Implementation Details
	More Experimental Settings
	More Results

	Extended Discussions on Related Work
	Extended Discussions on Limitations and Future Work

