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Abstract | We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing
rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt
reward-maximizing methods (e.g., PPO and GRPO), which tend to over-optimize dominant reward signals
while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform
scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the
reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced
optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct
experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of 10.0%
over GRPO and 5.1% over PPO on math benchmarks, and performs consistently better on code reasoning tasks.
These results highlight reward distribution-matching as a key step toward efficient exploration and diverse
reasoning in LLM reinforcement learning.

Distribution-matching: FlowRL

KL = 0.11 KL = 8.68

Reward-maximizing ∶ 	R++, PPO and GRPO 

Math Average Score

CodeForces Rating

Figure 1 | Top: Comparison between distribution-matching and reward-maximizing approaches.
FlowRL (left) learns to match the full reward distribution, maintaining diversity across multiple modes
with low KL divergence. In contrast, reward-maximizing methods like GRPO (right) concentrate on a
single high-reward peak, leading to mode collapse and higher KL divergence. Bottom: Performance
comparison. FlowRL consistently outperforms GRPO across math and code domains.
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1. Introduction

Reinforcement learning (RL) plays a crucial role in the post-training of large language models
(LLMs) [Zhang et al., 2025b]. A series of powerful reasoning models [Guo et al., 2025, Kavukcuoglu,
2025, Rastogi et al., 2025] have employed large-scale reinforcement learning to achieve strong
performance on highly challenging benchmarks [He et al., 2024]. The evolution of RL algorithms
for LLM reasoning has progressed through several key stages: REINFORCE [Sutton et al., 1999a]
provides a solid baseline that is easy to implement and efficient in simple settings; PPO [Schulman
et al., 2017] improves upon REINFORCE with better stability and efficiency in complex settings;
GRPO [Shao et al., 2024] simplifies PPO training by eliminating value functions and relying on group
comparisons, though at the cost of requiring more rollouts per update. However, all these methods
share a fundamental limitation in their reward-maximizing objective.
Reward-maximizing RL methods tend to overfit to the dominant mode of the reward distribu-

tion [Gao et al., 2023, Pan et al., 2022, Skalse et al., 2022, Zelikman et al., 2022]. This often results
in limited diversity among generated reasoning paths and reduces generalization to less frequent yet
valid logical outcomes [Hu et al., 2023]. As illustrated in Figure 1, GRPO neglects other meaningful
modes. These drawbacks become especially pronounced in complex long chain-of-thought (CoT; Wei
et al., 2022) reasoning, where capturing a diverse distribution of plausible solutions is essential for
effective generalization [Liu et al., 2025a]. Recent approaches adjust the clip ratio [Yu et al., 2025b],
augment the advantage function with an entropy-based term [Cheng et al., 2025], or selectively
promote high-entropy tokens [Wang et al., 2025], thereby dynamically adapting the training data
distribution and implicitly increasing diversity during training. This raises a fundamental question:
How can we promote diverse exploration to prevent convergence to dominant solution patterns in RL
training?
In this paper, we propose FlowRL, a policy optimization algorithm that aligns the policy model

with the full reward distribution, encouraging mode coverage. FlowRL achieves more efficient
exploration by fundamentally shifting from reward maximization to reward distribution matching,
thereby addressing the inherent mode-collapse limitations of previous RL approaches. As illustrated
in Figure 1, the core idea of FlowRL is to introduce a learnable partition function that normalizes
scalar rewards into a target distribution, and to minimize the reverse KL divergence between the
policy and this reward-induced distribution. We develop this KL objective based on the trajectory
balance formulation from GFlowNets [Bengio et al., 2023b], providing a gradient equivalence proof
that bridges generative modeling and policy optimization. To address the challenges of long CoT
training, we introduce two key technical solutions: length normalization to tackle gradient explosion
issues that occur with variable-length CoT reasoning, and importance sampling to correct for the
distribution mismatch between generated rollouts and the current policy.
We compare FlowRL with mainstream RL algorithms including REINFORCE++, PPO, and GRPO

across math and code domains, using both base and distilled LLMs (7B, 32B). In math domain,
FlowRL outperforms GRPO and PPO by 10.0% and 5.1%, respectively, demonstrating consistent
improvements across six challenging math benchmarks. Furthermore, FlowRL surpasses both PPO
and GRPO on three challenging coding benchmarks, highlighting its strong generalization capabilities
in code reasoning tasks. To understand what drives these performance gains, we analyze the diversity
of generated reasoning paths. This diversity analysis confirms that FlowRL generates substantially
more diverse rollouts than baseline methods, validating our approach’s effectiveness in exploring
multiple solution strategies.
Contributions. We summarize the key contributions of this work as follows:
• We propose FlowRL, a policy optimization algorithm that shifts from reward maximization to
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reward distribution matching via flow balance, encouraging diverse reasoning path exploration
while addressing the inherent mode-collapse limitations of existing RL methods.

• We introduce length normalization and importance sampling to enable effective training on variable-
length CoT reasoning, addressing gradient explosion and sampling mismatch issues.

• FlowRL outperforms GRPO and PPO by 10.0% and 5.1% respectively across math benchmarks and
demonstrates strong generalization on code reasoning tasks, with diversity analysis confirming
substantially more diverse solution exploration.

2. Preliminaries

Reinforcement Learning for Reasoning. We formulate reasoning as a conditional generation problem,
where the policy model receives a question x ∈ X and generates an answer y ∈ Y. The objective
is to learn a policy 𝜋𝜃(y |x) that produces high-quality answers under task-specific reward signals 𝑟.
To better illustrate the policy optimization procedure, we provide a detailed formulation of GRPO
below. For each question x, GRPO samples a group of answers {y1, y2, . . . , y𝐺} from old policy 𝜋𝜃𝑜𝑙𝑑
and updates the model by maximizing the following objective:

J𝐺𝑅𝑃𝑂(𝜃) = 𝔼[x∼𝑃 (X) ,{y𝑖 }𝐺𝑖=1∼𝜋𝜃𝑜𝑙𝑑 (Y |x) ]

1
𝐺

𝐺∑︁
𝑖=1

1
|y𝑖 |

|y𝑖 |∑︁
𝑡=1

{
min

[
𝜋𝜃(y𝑖,𝑡 |x, y𝑖,<𝑡)
𝜋𝜃𝑜𝑙𝑑 (y𝑖,𝑡 |x, y𝑖,<𝑡)

𝐴𝑖,𝑡, clip
(
𝜋𝜃(y𝑖,𝑡 |x, y𝑖,<𝑡)
𝜋𝜃𝑜𝑙𝑑 (y𝑖,𝑡 |x, y𝑖,<𝑡)

, 1 − 𝜖, 1 + 𝜖

)
𝐴𝑖,𝑡

]
− 𝜆𝔻𝐾𝐿

[
𝜋𝜃 | |𝜋𝑟𝑒 𝑓

]}
,

𝔻KL(𝜋𝜃∥𝜋ref) =
𝜋ref (y𝑖 |x)
𝜋𝜃(y𝑖 |x)

− log 𝜋ref (y𝑖 |x)
𝜋𝜃(y𝑖 |x)

− 1,
(1)

where 𝜖 and 𝜆 are hyper-parameters. Here, 𝐴𝑖 denotes the advantage, computed by normalizing
the group reward values {𝑟1, 𝑟2, . . . , 𝑟𝐺} as 𝐴𝑖 = 𝑟𝑖−mean({𝑟1,𝑟2,· · · ,𝑟𝐺 })

std({𝑟1,𝑟2,· · · ,𝑟𝐺 }) . Compared to GRPO, REINFORCE
applies the policy gradient directly, without advantage normalization, clipping, or KL regularization.
PPO uses a critic model to estimate the advantage and employs importance sampling to stabilize
policy updates.
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Figure 2 | GFlowNets [Bengio et al., 2023a], a
flow-balance perspective on reinforcement learn-
ing. The initial flow 𝑍𝜙(𝑠0) injects probability mass
into the environment, which is transported through
intermediate states by the policy 𝜋𝜃 and accumu-
lated at terminal states in proportion to the scalar
rewards.

GFlowNets. Generative Flow Networks [Ben-
gio et al., 2023a] are a probabilistic frame-
work for training stochastic policies to sample
discrete, compositional objects (e.g., graphs,
sequences) in proportion to a given reward.
As shown in Figure 2, the core principle of
GFlowNets is to balance the forward and back-
ward probability flows at each state, inspired
by flow matching [Bengio et al., 2021]. The
initial flow is estimated by 𝑍𝜙(𝑠0) at the initial
state 𝑠0. The output flow is equal to the out-
come reward 𝑟(𝑠𝑛) conditioned at the final state
𝑠𝑛. Following Lee et al. [2024], we use a 3-layer
MLP to parameterize 𝑍𝜙. This flow-balancing
mechanism facilitates the discovery of diverse,
high-reward solutions by ensuring proper exploration of the solution space. See Appendix C for
detailed GFlowNets background.
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3. Methodology

In this section, we first formulate distribution matching in reinforcement learning through reverse
KL divergence and establish its connection to trajectory balance from GFlowNets. To address the
challenges of gradient explosion and sampling mismatch encountered during long CoT training, we
further incorporate length normalization and importance sampling. Using this enhanced framework,
we derive a flow-balanced objective, termed FlowRL.

3.1. From Reward Maximization to Distribution Matching

As illustrated in Figure 1, recent powerful large reasoning models typically employ reward-maximizing
RL algorithms, such as PPO or GRPO. However, these methods tend to optimize toward the dominant
reward mode, frequently resulting in mode collapse and the neglect of other plausible, high-quality
reasoning paths. To address this fundamental limitation, we propose optimizing the policy by aligning
its output distribution to a target reward distribution. A simple yet effective way to achieve this is
to minimize the reverse KL divergence1 between the policy and this target. However, in long CoT
reasoning tasks, the available supervision in RL is a scalar reward, rather than a full distribution.
Moreover, enumerating or sampling all valid trajectories to recover the true reward distribution is
computationally intractable.
Inspired by energy-based modeling [Du and Mordatch, 2019, Hinton et al., 1995], we introduce

a learnable partition function 𝑍𝜙(x) to normalize scalar rewards into a valid target distribution.
This allows us to minimize the reverse KL divergence between the policy and the reward-weighted
distribution, formalized as:

min
𝜃

DKL
(
𝜋𝜃(y | x)





 exp(𝛽𝑟(x, y))𝑍𝜙(x)

)
⇒ 𝜋𝜃(y | x) ∝ exp(𝛽𝑟(x, y)), (2)

where 𝑟(x, y) is the reward function, 𝛽 is a hyperparameter, 𝑍𝜙(x) is the learned partition function,
and the resulting target distribution is defined as 𝜋̃(y | x) = exp(𝛽𝑟 (x,y) )

𝑍𝜙 (x) . This objective encourages
the policy to sample diverse, high-reward trajectories in proportion to their rewards, rather than
collapsing to dominant modes as in standard reward maximization.
While the KL-based formulation provides a principled target distribution, we derive a more

practical, RL-style objective that facilitates efficient policy optimization.
Proposition 1. In terms of expected gradients, minimizing the KL objective in Eq. 2 is equivalent to
minimizing the trajectory balance loss used in GFlowNet [Bartoldson et al., 2025, Lee et al., 2024, Malkin
et al., 2022, 2023]:

min
𝜃

DKL
(
𝜋𝜃(y | x)





 exp(𝛽𝑟(x, y))𝑍𝜙(x)

)
⇐⇒ min

𝜃

(log 𝑍𝜙(x) + log𝜋𝜃(y | x) − 𝛽𝑟(x, y)
)2︸                                               ︷︷                                               ︸

Trajectory Balance

(3)

Remark 2 (Trajectory balance as a practical surrogate for KL minimization). Given the equivalence
established in Proposition 1, the KL-based distribution matching objective can be reformulated as the
trajectory balance loss. This reformulation provides a practical optimization approach by using a stable
squared loss form rather than direct KL optimization, and by treating 𝑍𝜙(x) as a learnable parameter
rather than requiring explicit computation of the intractable partition function. The trajectory balance
objective thus serves as a tractable surrogate for reward-guided KL minimization that can be directly
integrated into existing RL frameworks.
1We use reverse KL since we can only sample from the policy model, not the target reward distribution.
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3.2. FlowRL

As established in Proposition 1, the target reward distribution can be approximated by optimizing
the trajectory balance objective. However, applying this objective directly to long CoT reasoning
introduces two key challenges:
Problem I: Exploding gradients from long trajectories. Trajectory balance is a sequence-level
objective, and applying it to long CoT reasoning with up to 8K tokens leads to exploding gradients
and unstable updates. This issue is not observed in prior GFlowNets works, which typically operate
on short trajectories in small discrete spaces. Specifically, the log-probability term log𝜋𝜃(y | x)
decomposes into a token-wise sum, ∑𝑡 log𝜋𝜃(y𝑡 | y<𝑡, x), causing the gradient norm to potentially
scale with sequence length.
Problem II: Sampling mismatch. Mainstream RL algorithms such as PPO and GRPO commonly
perform micro-batch updates and reuse trajectories collected from an old policy 𝜋𝜃old , enabling
data-efficient training. In contrast, the KL-based trajectory balance objective assumes fully on-
policy sampling, where responses are drawn from the current policy. This mismatch poses practical
limitations when integrating trajectory balance into existing RL pipelines.
These limitations motivate our reformulation that retains the benefits of distribution matching

while addressing key practical challenges. To enable this reformulation, we first redefine the reward
function following established practices in GFlowNets literature [Bartoldson et al., 2025, Lee et al.,
2024, Yu et al., 2025a] by incorporating a reference model as a prior constraint on the reward
distribution. Specifically, we modify the original exp(𝛽𝑟(x, y)) to include the reference model:

exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x), (4)
where 𝑟(x, y) denotes the outcome reward commonly used in reinforcement learning and 𝜋ref is the
initial pre-trained model. We follow Guo et al. [2025] to use outcome-based reward signals, and
apply group normalization to 𝑟(x, y) as 𝑟̂𝑖 = (𝑟𝑖 −mean(r))/std(r), where r = {𝑟1, 𝑟2, . . . , 𝑟𝐺} denotes
the set of rewards within a sampled group. By substituting the redefined reward formulation Eq. 4
into Eq. 3, we derive the following objective2:

min
𝜃

(log 𝑍𝜙(x) + log𝜋𝜃(y | x) − 𝛽 𝑟̂𝑖 (x, y) − log𝜋ref (y | x)
)2 (5)

Remark 3 (Reward shaping via length normalization). Trajectory balance treats both the initial flow
and the outcome reward as sequence-level quantities. In contrast, standard policy optimization
methods such as PPO or GRPO assign rewards at the token level and compute gradients at each
step. However, for trajectories of varying lengths (e.g., CoT responses), this mismatch can cause the
log-probability term log𝜋𝜃(y | x) =∑ |y |

𝑡=1 log𝜋𝜃(𝑦𝑡 | 𝑦<𝑡, x) to scale with sequence length. To address
this, we apply a form of reward shaping by normalizing log-probabilities with respect to sequence
length. Specifically, we rescale the term as 1|y | log𝜋𝜃(y | x), balancing the contributions of long and
short sequences and stabilizing the learning signal.
Remark 4 (Importance sampling for data-efficient training). To mitigate sampling mismatch, we
employ importance sampling inspired by PPO to stabilize policy updates with off-policy data. We
re-weight stale trajectories using the importance ratio 𝑤 = 𝜋𝜃(y | x)/𝜋old(y | x), which serves as a
coefficient in the surrogate loss. Since our objective focuses on optimizing trajectory balance rather
than expected return, we detach the gradient from the current policy to prevent excessive policy
drift: 𝑤 = detach[𝜋𝜃(y | x)]/𝜋old(y | x). For additional stability, we incorporate PPO-style clipping to
bound the importance weights: 𝑤 = clip

(
𝜋𝜃 (y |x)
𝜋old (y |x) , 1 − 𝜖, 1 + 𝜖

)detach
.

2The substitution replaces 𝛽𝑟(x, y) in trajectory balance objective Eq. 3 with 𝛽𝑟(x, y) + log𝜋ref (y | x) to incorporate the
reference model constraint.
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Incorporating these improvements into Eq. 5, we arrive at the following FlowRL objective:

FlowRL

LFlowRL = 𝑤 ·
(
log 𝑍𝜙(x) +

1
|y | log𝜋𝜃(y | x) − 𝛽𝑟̂(x, y) − 1|y | log𝜋ref (y | x)

)2
(6)

where the clipped importance weight 𝑤 and normalized reward 𝑟̂(x, y) are defined as:

𝑤 = clip( 𝜋𝜃(y | x)
𝜋old(y | x) , 1 − 𝜖, 1 + 𝜖)detach, 𝑟̂𝑖 =

𝑟𝑖 −mean(r)
std(r) . (7)

We use this objective to update the policy parameters 𝜃 during training, and refer to this strategy as
FlowRL. Implementation details and theoretical analysis are provided in § 5 and § B, respectively.

4. Related Work

4.1. Reinforcement Learning for Reasoning

Reinforcement learning has emerged as a powerful approach for large language models post-training
on reasoning tasks [Guo et al., 2025, Lightman et al., 2023b, Schulman et al., 2017, Shao et al.,
2024, Sutton et al., 1999b]. Most approaches employ reward-maximizing RL to optimize expected
cumulative returns. Entropy regularization [Ahmed et al., 2019, Cheng et al., 2025, Haarnoja et al.,
2018] is a classical technique for mitigating mode collapse by promoting diversity in the policy’s output
distribution, and has also been shown to enhance reasoning capabilities in various settings [Chao
et al., 2024, Eysenbach and Levine, 2021]. However, for long CoT reasoning, the extended trajectory
length (e.g., 8k–16k tokens) makes it difficult for the regularization signal to effectively influence
reward-maximizing learning. Recent work [Cheng et al., 2025, Cui et al., 2025, Dong et al., 2025,
Wang et al., 2025] has discovered that training with more diverse or high-entropy training data can
further enhance training effectiveness. Compared to traditional entropy regularization, the above
methods explicitly increase the proportion of low-probability (i.e., high-entropy) tokens in the training
data. In our work, we address the mode-collapse problem by fundamentally shifting from reward
maximization to reward distribution matching in our RL formulation.

4.2. GFlowNets

GFlowNets [Bengio et al., 2023a] represent a class of diversity-driven algorithms designed to balance
probability flows across states. They have rich connections to probabilistic modelingmethods [Ma et al.,
Malkin et al., 2023, Zhang et al., 2022a,b, 2024a, Zimmermann et al., 2022], and control methods [Pan
et al., 2023b,c,d, Tiapkin et al., 2024, Zhang et al., 2024b]. This advantage has enabled GFlowNets to
achieve successful applications in multiple downstream tasks, such as molecular drug discovery [Jain
et al., 2022, 2023a,b, Kim et al., 2023, 2024, Liu et al., 2022, Pan et al., 2023a, Shen et al., 2023],
phylogenetic inference [Zhou et al., 2024], and combinatorial optimization [Zhang et al., 2023a,b].
For generative AI, GFlowNets provide a powerful approach to align pretrained models in scenarios such
as image generation [Yun et al., 2025, Zhang et al., 2025a] and language model fine-tuning [Hu et al.,
2024, Lee et al., 2024, Yu et al., 2025a]. Another line of work primarily focuses on the theoretical
aspects of GFlowNets. Recent theoretical studies have interpreted GFlowNets as solving a maximum
entropy reinforcement learning problem within a modified Markov Decision Process (MDP) [Deleu
et al., 2024, Mohammadpour et al., 2024, Tiapkin et al., 2024]. These theoretical contributions have
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inspired us to enhance reinforcement learning from a more foundational standpoint using GFlowNets
principles. A comprehensive overview of GFlowNets theory can be found in Appendix C.

4.3. Flow-Matching Policies

Flow matching simplifies diffusion-based approaches by learning vector fields that transport samples
from prior to target distributions [Lipman et al., 2023]. Recent work has explored flow matching
for policy optimization. McAllister et al. [2025] reformulates policy optimization using advantage-
weighted ratios from conditional flow matching loss, enabling flow-based policy training without
expensive likelihood computations. Pfrommer et al. [2025] explored reward-weighted flow matching
for improving policies beyond demonstration performance. Park et al. [2025] uses a separate one-step
policy to avoid unstable backpropagation through time when training flow policies with RL. Zhang
et al. [2025a] proposed a combined loss function integrating PPO and GFlowNets to optimize diffusion
model alignment. However, these approaches focus on continuous control, image generation, or
vision-action models, rather than addressing mode-collapse limitations in reward-maximizing RL.
Inspired by flow matching principles, our work improves upon RL training to enhance training stability
while promoting diverse solution exploration.

5. Experiment Settings

Backbone Models. There are two learnable modules in Eq. 6: the policy model 𝜋𝜃 and the partition
function 𝑍𝜙. For the policy model 𝜋𝜃, we use Qwen-2.5-7B/32B [Team, 2024] for math tasks and
DeepSeek-R1-Distill-Qwen-7B [DeepSeek-AI, 2025] for code tasks, respectively. For partition
function 𝑍𝜙, following Lee et al. [2024], we use a randomly initialized 3-layer MLP with hidden
dimensions matching those of the base model. The reference model 𝜋ref is the corresponding fixed
pretrained model. All training scripts are based on the veRL [Sheng et al., 2024]. For the reward
function, following Lee et al. [2024], we set the hyperparameter 𝛽 = 15.
Baselines. We compare our method against three representative reward-maximization RL baselines:
REINFORCE++ (R++; Hu et al., 2025, Sutton et al., 1999b), PPO [Schulman et al., 2017], and
GRPO [Shao et al., 2024]. All baselines follow the official veRL recipes, with consistent training
configurations. For fair comparison, all methods use the same learning rate, batch size, and training
steps, and are evaluated at convergence using identical step counts.
Training Configuration. We experiment on both math and code domains. For the math domain,
we use the training set collected from DAPO [Yu et al., 2025b]. For the code domain, we follow the
setup of DeepCoder [Luo et al., 2025], using their training set. For 7B model training, we use a single
node equipped with 8 NVIDIA H800 GPUs (80GB memory each). For 32B model training, we scale
to 4 nodes with 32 GPUs to accommodate the larger memory requirements. All experiments use
max_prompt_length = 2048 and max_response_length = 8192 across both model sizes. We
use a batch size of 512 for math reasoning tasks and 64 for code reasoning tasks. We set the learning
rate to 1e-6 and enable dynamic batch sizing in veRL for efficient training. For GRPO and FlowRL,
we configure rollout_n = 8, meaning each prompt generates 8 response rollouts as the group size.
Evaluation Configuration. For the math domain, we evaluate on six challenging benchmarks: AIME
2024/2025 [MAA, 2025], AMC 2023 [MAA, 2023], MATH-500 [Lightman et al., 2023a], Min-
erva [Lewkowycz et al., 2022], and Olympiad [He et al., 2024]. For the code domain, we evaluate
on LiveCodeBench [Jain et al., 2024], CodeForces [Penedo et al., 2025], and HumanEval+ [Chen
et al., 2021]. For all evaluation datasets, we perform 16 rollouts and report the average accuracy,
denoted as Avg@16. We further report rating and percentile for Codeforces. During generation, we
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AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg

Qwen2.5-32B-Base, Max Response Len=8K
Backbone 4.6 2.1 28.6 52.5 27.0 21.4 22.7
R++ 14.8+10.2 9.2+7.1 52.7+24.1 44.4−8.1 17.4−9.6 24.5+3.1 27.1
PPO 26.9+22.3 20.4+18.3 76.4+47.8 69.2+16.7 28.8+1.8 37.9+16.5 43.3
GRPO 23.1+18.5 14.6+12.5 76.9+48.3 61.6+9.1 19.0−8.0 34.9+13.5 38.3
FlowRL 24.0+19.4 21.9+19.8 73.8+45.2 80.8+28.3 38.2+11.2 51.8+30.4 48.4

Qwen2.5-7B-Base, Max Response Len=8K
Backbone 4.4 2.1 30.8 54.5 22.4 24.0 23.0
R++ 11.0+6.6 5.4+3.3 66.7+35.9 54.3−0.2 24.4+2.0 27.3+3.3 31.5
PPO 9.4+5.0 7.3+5.2 63.4+32.6 58.0+3.5 26.5+4.1 27.3+3.3 32.0
GRPO 13.5+9.1 9.8+7.7 64.5+33.7 57.1+2.6 23.1+0.7 26.9+2.9 32.5
FlowRL 15.4+11.0 10.8+8.7 54.5+23.7 67.0+12.5 31.4+9.0 34.6+10.6 35.6

Table 1 | Results on math benchmarks. We report Avg@16 accuracy with relative improvements
shown as subscripts. Positive gains are shown in green and negative changes in red. FlowRL
outperforms all baselines across both 7B and 32B model scales.

Models LiveCodeBench CodeForces HumanEval+

Avg@16 Pass@16 Rating Percentile Avg@16
DeepSeek-R1-Distill-Qwen-7B, Max Response Len=8K

Backbone 30.7 49.5 886.7 19.4 80.9
R++ 30.5−0.2 52.7+3.2 1208.0+321.3 56.8+37.4 76.6−4.3
PPO 35.1+4.4 54.5+5.0 1403.1+516.4 73.7+54.3 82.3+1.4
GRPO 32.8+2.1 52.3+2.8 1313.8+427.1 67.1+47.7 80.1−0.8
FlowRL 37.4+6.7 56.3+6.8 1549.5+662.8 83.3+63.9 83.3+2.4

Table 2 | Results on code benchmarks. We report metrics with relative improvements shown as
subscripts. Positive gains are shown in green and negative changes in red. FlowRL achieves the
strongest performance across all three benchmarks, demonstrating its effectiveness in code reasoning
tasks.

use sampling parameters of temperature = 0.6 and top_p = 0.95 for all evaluations. The response
length for evaluation is set to 8,192, consistent with the training configuration.

6. Results

6.1. Main Results

Our experimental results, summarized in Table 1 and Table 2, demonstrate that FlowRL consistently
outperforms all reward-maximization baselines across both math and code reasoning domains. Ta-
ble 1 reports results on math reasoning benchmarks using both 7B and 32B base models, while
Table 2 presents the corresponding results on code reasoning tasks. On math reasoning tasks, FlowRL
achieves the highest average accuracy of 35.6% with the 7B model and 48.4% with the 32B model,
surpassing PPO by 5.1% and GRPO by 10.1% on the 32B model. FlowRL shows strong improvements
on challenging benchmarks like MATH-500 and Olympiad problems, demonstrating consistent gains
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Method AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad Avg

FlowRL 15.41 10.83 54.53 66.96 31.41 34.61 35.63
w/o IS 6.25 7.91 41.40 56.97 22.19 25.52 26.71

Zhang et al. [2025a] 10.41 6.66 53.75 66.50 30.97 33.72 33.67

Table 3 | Ablation study on FlowRL with Qwen2.5-7B as the base model. Avg@16 accuracy is reported
across six math reasoning benchmarks. IS denotes importance sampling.

across diverse mathematical domains. On code generation tasks, FlowRL achieves compelling im-
provements with the highest Avg@16 score of 37.43% on LiveCodeBench, a Codeforces rating of
1549.47 with 83.3% percentile ranking, and 83.28% accuracy on HumanEval+, outperforming all
baselines across the board. These consistent performance gains across both domains and model scales
provide strong empirical evidence that FlowRL’s flow-balanced optimization successfully enhances
generalization. This improvement comes from promoting diverse solution exploration compared to
previous reward-maximizing RL approaches.

6.2. Ablation Studies
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Figure 3 | Ablation study on the 𝛽 in FlowRL.
𝛽 = 15 (highlighted in blue) achieves the best
performance.

We conduct ablation studies on importance sampling
and the 𝛽 hyperparameter. For importance sampling,
we compared the performance with and without it,
and implemented a combined loss approach pro-
posed by Zhang et al. [2025a] that simultaneously
optimizes both GFlowNets and PPO objectives. This
combined loss focuses on optimizing diffusion mod-
els, and we adapt it to long CoT reasoning tasks
for comparison. Table 3 demonstrates that impor-
tance sampling substantially improves FlowRL perfor-
mance across all math reasoning benchmarks. Com-
pared to Zhang et al. [2025a], using importance sam-
pling as a trajectory-level ratio is more suitable than
the combined loss of GFlowNets and PPO. The per-
formance drop without importance sampling (from
35.63% to 26.71%) highlights the critical role of cor-
recting for distribution mismatch between rollout
generation and policy training. For the hyperparam-
eter 𝛽, we conduct a series of parameter ablation studies, and Figure 3 shows that 𝛽 = 15 achieves
optimal performance, with detailed results shown in Table 7.

7. Analysis

7.1. Diversity Analysis

To assess solution diversity, we follow the approach of Yu et al. [2025a] and employ GPT-4o-mini [Ope-
nAI, 2024] to evaluate all responses generated by each method on AIME 24/25. The evaluation
prompt is shown in Appendix C. As shown in Figure 4, FlowRL achieves higher diversity scores
compared to baseline methods. This demonstrates that FlowRL improves sample diversity compared
to baselines, which tend to exhibit repetitive solution patterns. This diversity evaluation reveals
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Table 4 | Case study comparing GRPO and FlowRL rollouts on an AIME problem. GRPO exhibits
repetitive patterns (AM-GM ×3, identity loops ×2), while FlowRL follows a more diverse solution
path.

Content (boxed = actions; “×𝑘” = repeated; “. . . ” = omitted)

Question Let B be the set of rectangular boxes with surface area 54 and volume 23. Let 𝑟
be the radius of the smallest sphere that can contain each box in B. If 𝑟2 = 𝑝

𝑞
with

gcd(𝑝, 𝑞) = 1, find 𝑝 + 𝑞.
GRPO “. . . denote 𝑎, 𝑏, 𝑐 . . . 2(𝑎𝑏+𝑏𝑐+𝑐𝑎) = 54, 𝑎𝑏𝑐 = 23 . . . 𝑑 =

√
𝑎2 + 𝑏2 + 𝑐2, 𝑟 = 𝑑/2

. . . (𝑎+𝑏+𝑐)2 = 𝑎2+𝑏2+𝑐2 + 2(𝑎𝑏+𝑏𝑐+𝑐𝑎) . . . AM–GM ×3: AM–GM (1) . . . AM–GM (2)

. . . AM–GM (3) . . . (𝑎+𝑏+𝑐)3 identity loop ×2: loop (1) . . . loop (2) . . .
𝑎 = 𝑏 = 𝑐 (contradiction) . . . back to (𝑎+𝑏+𝑐)2 . . . no factorization . . . ”

FlowRL “. . . let 𝑎, 𝑏, 𝑐 with 2(𝑎𝑏+𝑏𝑐+𝑐𝑎) = 54, 𝑎𝑏𝑐 = 23 . . . 𝑑 =
√
𝑎2 + 𝑏2 + 𝑐2, 𝑟 = 𝑑/2

. . . (𝑎+𝑏+𝑐)2 ⇒ 𝑎2+𝑏2+𝑐2 = 𝑠2 − 54 . . . 𝑎 = 𝑏 . . . 𝑎3 − 27𝑎 + 46 = 0 . . .
rational root 𝑎 = 2 . . . factor (𝑎 − 2) (𝑎2 + 2𝑎 − 23) . . . branch 𝑎 = −1 + 2

√
6 . . .

back-sub 𝑐 = 23/𝑎2 . . . 𝑎2+𝑏2+𝑐2 = 65716 . . . 𝑟2 = 65764 . . . Answer 721 . . . ”

significant differences in exploration patterns across methods. This nearly doubling of diversity score
compared to the strongest baseline (PPO) indicates that FlowRL generates qualitatively different
solution approaches rather than minor variations of the same strategy. The diversity analysis provides
empirical validation of our core hypothesis that flow-balanced optimization promotes mode coverage
in complex reasoning tasks.

7.2. Case Study
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Figure 4 | GPT-judged diversity scores on roll-
outs of AIME 24/25 problems. FlowRL gener-
ates more diverse solutions than R++, GRPO,
and PPO.

Table 4 illustrates the behavioral differences between
GRPO and FlowRL on a representative AIME prob-
lem. GRPO exhibits repetitive patterns, applying AM-
GM three times and getting stuck in identity loops,
failing to solve the problem. FlowRL explores more
diverse actions: it sets 𝑎 = 𝑏, derives a cubic equation,
finds the rational root, and reaches the correct an-
swer. This shows that FlowRL successfully avoids the
repetitive exploration patterns. The contrast reveals
fundamental differences in exploration strategies:
GRPO’s reward-maximizing approach leads to ex-
ploitation of familiar techniques (AM-GM inequality)
without exploring alternatives, eventually reaching
contradictory conclusions like 𝑎 = 𝑏 = 𝑐. In contrast,
FlowRL’s distribution-matching enables strategic de-
cisions such as the symmetry assumption 𝑎 = 𝑏, which
transforms the problem into a tractable cubic equation 𝑎3 − 27𝑎+ 46 = 0, allowing systematic solution
through rational root testing and polynomial factorization.
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8. Conclusion

In this work, we introduce FlowRL, which transforms scalar rewards into normalized target distribu-
tions using a learnable partition function and minimizes the reverse KL divergence between the policy
and target distribution. We demonstrate that this approach is theoretically equivalent to trajectory
balance objectives from GFlowNets and implicitly maximizes both reward and entropy, thereby pro-
moting diverse reasoning trajectories. To further address gradient explosion and sampling mismatch
issues in long CoT reasoning, we incorporate importance sampling and length normalization. Through
experiments on math and code reasoning benchmarks, FlowRL achieves consistent improvements
across all tasks compared to GRPO and PPO. Our diversity analysis and case studies confirm that
FlowRL generates more varied solution approaches while avoiding repetitive patterns.
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A. Proof of Proposition 1

We begin by analyzing the gradient of the Kullback–Leibler (KL) divergence between the policy
𝜋𝜃(y | x) and the target reward distribution exp(𝛽𝑟 (x,y) )

𝑍𝜙 (x) :

∇𝜃𝐷KL

(
𝜋𝜃(y | x) ∥ exp(𝛽𝑟(x, y))

𝑍𝜙(x)

)
= ∇𝜃

∫
𝜋𝜃(y | x) log

[
𝜋𝜃(y | x) · 𝑍𝜙(x)
exp(𝛽𝑟(x, y))

]
𝑑y

=

∫
∇𝜃𝜋𝜃(y | x) log

[
𝑍𝜙(x)𝜋𝜃(y | x)
exp(𝛽𝑟(x, y))

]
𝑑y +

∫
𝜋𝜃(y | x)∇𝜃 log

[
𝑍𝜙(x)𝜋𝜃(y | x)
exp(𝛽𝑟(x, y))

]
𝑑y

=

∫
𝜋𝜃(y | x) ∇𝜃 log𝜋𝜃(y | x) log

[
𝑍𝜙(x)𝜋𝜃(y | x)
exp(𝛽𝑟(x, y))

]
𝑑y +

∫
𝜋𝜃(y | x) ∇𝜃 log𝜋𝜃(y | x) 𝑑y︸                                     ︷︷                                     ︸

=∇𝜃
∫
𝜋𝜃 (y |x) 𝑑y=∇𝜃1=0

=

∫
𝜋𝜃(y | x) ∇𝜃 log𝜋𝜃(y | x) log

[
𝑍𝜙(x)𝜋𝜃(y | x)
exp(𝛽𝑟(x, y))

]
𝑑y

= 𝔼y∼𝜋𝜃 ( · |x)

[
log

(
𝑍𝜙(x)𝜋𝜃(y | x)
exp(𝛽𝑟(x, y))

)
· ∇𝜃 log𝜋𝜃(y | x)

]

(8)

Next, consider the trajectory balance objective used in GFlowNets learning [Bartoldson et al.,
2025, Bengio et al., 2023b, Lee et al., 2024], defined as:

L(y, x; 𝜃) =
(
log 𝑍𝜙(x) 𝜋𝜃(y | x)

exp(𝛽𝑟(x, y))

)2
. (9)

Taking the gradient of this objective with respect to 𝜃 yields:

∇𝜃L(𝜃) = 2 · 𝔼y∼𝜋𝜃 ( · |x)

[(
log 𝑍𝜙(x) · 𝜋𝜃(y | x)

exp(𝛽𝑟(x, y))

)
· ∇𝜃 log𝜋𝜃(y | x)

]
(10)

Thus, minimizing the KL divergence is equivalent (up to a constant) to minimizing the trajectory
balance loss, confirming Proposition 1.

B. Theoretical Analysis

We conduct an interpretation of FlowRL that clarifies the role of each component in the objective.
Proposition 5. Minimizing the KL divergence in Eq. 5 is equivalent (in terms of gradients) to jointly
maximizing reward and policy entropy:

max
𝜃

𝔼y∼𝜋𝜃

𝛽 𝑟(x, y)︸    ︷︷    ︸
reward

− log 𝑍𝜙(x) + log𝜋ref (y |x)
 +H(𝜋𝜃)︸  ︷︷  ︸

entropy

. (11)

Remark 6 (FlowRL beyond reward maximization). Proposition 5 reveals that FlowRL can be interpreted
as jointly maximizing expected reward and policy entropy. This shift encourages the policy to explore a
broader set of high-quality solutions, enabling more diverse and generalizable behaviors on reasoning
tasks. Our interpretation also aligns with prior work that views GFlowNets training as a form of
maximum entropy RL [Deleu et al., 2024, Mohammadpour et al., 2024].
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The proof of Proposition 5 is provided as below.
Recall from Eq. 3 and Eq. 5 that the FlowRL objective is sourced from the minimization of a KL

divergence:

𝐷KL

(
𝜋𝜃(y | x) ∥ exp(𝛽 𝑟(x, y)) · 𝜋ref (y | x)

𝑍𝜙(x)

)
=

∫
𝜋𝜃(y | x) log

[
𝑍𝜙(x)𝜋𝜃(y | x)

exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x)

]
𝑑y

(12)
Rearranging the terms, we obtain:

argmin
𝜃

𝐷KL

(
𝜋𝜃(y | x) ∥ exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x)

𝑍𝜙(x)

)
= argmin

𝜃

∫
𝜋𝜃(y | x) log

[
𝑍𝜙(x)𝜋𝜃(y | x)

exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x)

]
𝑑y

= argmax
𝜃

{
𝔼y∼𝜋𝜃 ( · |x) log

[exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x)
𝑍𝜙(x)

]
−
∫

𝜋𝜃(y | x) log𝜋𝜃(y | x)𝑑y
}

= argmax
𝜃

{
𝔼y∼𝜋𝜃 ( · |x) log

[exp (𝛽 𝑟(x, y)) · 𝜋ref (y | x)
𝑍𝜙(x)

]
+H(𝜋𝜃)

}
(13)

Finally, we express the FlowRL objective in its compact form:

max
𝜃

𝔼y∼𝜋𝜃 ( · |x)

𝛽𝑟(x, y)︸   ︷︷   ︸
reward

− log 𝑍𝜙(x)︸     ︷︷     ︸
normalization

+ log𝜋ref (y |x)︸          ︷︷          ︸
prior alignment

 +H(𝜋𝜃)︸  ︷︷  ︸
entropy

. (14)

Therefore, minimizing the FlowRL objective can be interpreted as jointly maximizing reward
and entropy, while also aligning the policy with a structured prior. The reward term drives task
performance, while the normalization term 𝑍𝜙(x) ensures consistency with a properly normalized
target distribution. This encourages the policy 𝜋𝜃 to cover the entire reward-weighted distribution
rather than collapsing to a few high-reward modes. The reference policy 𝜋ref provides inductive
bias that regularizes the policy toward desirable structures, and the entropy term H(𝜋𝜃) encourages
diversity in sampled solutions. Together, these components promote better generalization of FlowRL.

C. GFlowNets

We follow the notation of [He et al., 2025, Madan et al., 2023] to introduce the fundamentals of
GFlowNets. Let X denote the compositional objects and 𝑅 be a reward function that assigns non-
negative values to each object 𝑥 ∈ X. GFlowNets aim to learn a sequential, constructive sampling
policy 𝜋 that generates objects 𝑥 with probabilities proportional to their rewards, i.e.,𝜋(𝑥) ∝ 𝑅(𝑥).
This process can be represented as a directed acyclic graph (DAG) G = (S,A), where the vertices
𝑠 ∈ S are referred to as states, and the directed edges (𝑢 → 𝑣) ∈ A are called actions. The generation
of an object 𝑥 ∈ X corresponds to a complete trajectory 𝜏 = (𝑠0 → · · · → 𝑠𝑛) ∈ T within the DAG,
beginning at the initial state 𝑠0 and ending at a terminal state 𝑠𝑛 ∈ X. The state flow 𝐹(𝑠) is defined
as a non-negative weight assigned to each state 𝑠 ∈ S. The forward policy 𝑃𝐹 (𝑠′ | 𝑠) specifies the
transition probability to a child state 𝑠′, while the backward policy 𝑃𝐵 (𝑠 | 𝑠′) specifies the transition
probability to a parent state 𝑠. To this end, detailed balance objective enforces local flow consistency
across every edge (𝑠 → 𝑠′) ∈ A:

∀(𝑠 → 𝑠′) ∈ A, 𝐹𝜃(𝑠)𝑃𝐹 (𝑠′ | 𝑠; 𝜃) = 𝐹𝜃(𝑠′)𝑃𝐵 (𝑠 | 𝑠′; 𝜃). (15)
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To achieve this flow consistency, GFlowNets employ training objectives at different levels of granularity,
including detailed balance [Bengio et al., 2023b], trajectory balance [Malkin et al., 2022], and sub-
trajectory balance [Madan et al., 2023]. Leveraging their diversity-seeking behavior, GFlowNets have
been successfully applied across a range of domains, including molecule generation [Cretu et al.,
2024], diffusion fine-tuning [Liu et al., 2025b, Zhang et al., 2025a], and amortized reasoning [Hu
et al., 2024, Yu et al., 2025a]. Among various training objective in GFlowNets, trajectory balance
maintains flow consistency at the trajectory level, defined as:

𝑍𝜃

𝑛∏
𝑡=1

𝑃𝐹 (𝑠𝑡 | 𝑠𝑡−1; 𝜃) = 𝑅(𝑥)
𝑛∏
𝑡=1

𝑃𝐵 (𝑠𝑡−1 | 𝑠𝑡; 𝜃). (16)

Furthermore, sub-trajectory balance achieves local balance on arbitrary subpaths 𝜏𝑖: 𝑗 = {𝑠𝑖 →
· · · → 𝑠 𝑗}, offering a more stable and less biased learning signal. We build on trajectory balance to
extend our KL-based objective through a gradient-equivalence formulation (Prop. 1), and further
improve it to better support long CoT reasoning in RL.

Models AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad Avg

Qwen2.5-7B Base Model
Backbone 4.37 2.08 30.78 54.48 22.38 24.02 23.02
R++ 10.57+6.20 5.10+3.02 66.02+35.24 54.29−0.19 24.47+2.09 27.30+3.28 31.29
PPO 9.95+5.58 7.34+5.26 63.63+32.85 57.72+3.24 26.22+3.84 27.35+3.33 32.03
GRPO 14.01+9.64 10.73+8.65 64.10+33.32 57.41+2.93 23.17+0.79 27.11+3.09 32.76
FlowRL 14.32+9.95 10.05+7.97 55.08+24.30 66.78+12.30 31.52+9.14 34.60+10.58 35.39

Table 5 | Math reasoning performance (Avg@64) at temperature = 0.6. Relative improvements are
shown as subscripts, with positive gains in green and negative changes in red. FlowRL consistently
outperforms all baselines and achieves the best average score under this low-temperature setting.

Models AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad Avg

Qwen2.5-7B Base Model
Backbone 3.39 1.51 23.90 45.18 16.98 18.27 18.20
R++ 10.63+7.24 4.63+3.12 66.99+43.09 54.36+9.18 23.89+6.91 26.65+8.38 31.19
PPO 10.52+7.13 6.51+5.00 63.04+39.14 57.46+12.28 25.91+8.93 27.16+8.89 31.77
GRPO 12.50+9.11 10.10+8.59 64.72+40.82 57.15+11.97 23.28+6.30 26.90+8.63 32.44
FlowRL 14.22+10.83 9.58+8.07 52.92+29.02 66.20+21.02 30.32+13.34 34.47+16.20 34.62

Table 6 | Math reasoning performance (Avg@64) at temperature = 1.0. Relative improvements are
shown as subscripts, with positive gains in green. FlowRL maintains robust performance under higher
generation randomness and continues to outperform all baselines on average.
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Models AIME 2024 AIME 2025 AMC 2023 MATH-500 Minerva Olympiad Avg

𝛽 = 5 13.54 10.00 56.09 58.91 20.79 28.72 31.34
𝛽 = 10 14.79 10.20 59.53 64.30 25.27 32.39 34.41
𝛽 = 15 15.41 10.83 54.53 66.96 31.41 34.61 35.63
𝛽 = 30 15.00 10.83 50.62 69.02 30.03 35.03 35.09

Table 7 | Ablation study on the effect of the 𝛽 parameter in FlowRL. We report Avg@16 accuracy
across six math reasoning benchmarks for different values of 𝛽.

Diversity Evaluation Prompt

System: You are evaluating the DIVERSITY of solution approaches for a mathematics competition
problem. Focus on detecting even SUBTLE differences in methodology that indicate different problem-
solving strategies.
PROBLEM:
{problem}
16 SOLUTION ATTEMPTS:
{formatted_responses}
EVALUATION CRITERIA - Rate diversity from 1 to 5:
Score 1 - Minimal Diversity:
• 14+ responses use essentially identical approaches
• Same mathematical setup, same variable choices, same solution path
• Only trivial differences (arithmetic, notation, wording)
• Indicates very low exploration/diversity in the generation process

Score 2 - Low Diversity:
• 11-13 responses use the same main approach
• 1-2 alternative approaches appear but are rare
• Minor variations within the dominant method (different substitutions, orderings)
• Some exploration but heavily biased toward one strategy

Score 3 - Moderate Diversity:
• 7-10 responses use the most common approach
• 2-3 distinct alternative approaches present
• Noticeable variation in problem setup or mathematical techniques
• Balanced mix showing reasonable exploration

Score 4 - High Diversity:
• 4-6 responses use the most common approach
• 3-4 distinct solution strategies well-represented
• Multiple mathematical techniques and problem framings
• Strong evidence of diverse exploration strategies

Score 5 - Maximum Diversity:
• No single approach dominates (≤3 responses use same method)
• 4+ distinctly different solution strategies
• Wide variety of mathematical techniques and creative approaches
• Excellent exploration and generation diversity

IMPORTANT: Focusing on the DIVERSITY of the attempted approaches. Return ONLY a number from 1
to 5.
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