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Abstract

We introduce three new attention mechanisms that outperform standard multi-
head attention in terms of efficiency and learning capabilities, thereby improving
the performance and broader deployability of Transformer models. Our first
contribution is Optimised Attention, which performs similarly to standard attention,
but has 3/4 as many parameters and one matrix multiplication fewer per head. Next,
we introduce Efficient Attention, which performs on par with standard attention with
only 1/2 as many parameters as many parameters and two matrix multiplications
fewer per head and is up to fwice as fast as standard attention. Lastly, we introduce
Super Attention, which surpasses standard attention by a significant margin in both
vision and natural language processing tasks while having fewer parameters and
matrix multiplications. In addition to providing rigorous mathematical comparisons,
we evaluate the presented attention mechanisms on MNIST, CIFAR100, IMDB
Movie Reviews, and Amazon Reviews datasets.

1 Introduction

Not many ideas have had as profound an effect on the field of Artificial Intelligence (Al) as the
attention mechanism (Bahdanau et al.l[2015)). Introduced as a method to improve machine translation,
the attention mechanism revolutionised the way neural networks process and interpret data. By
allowing models to focus on specific parts of the input while disregarding irrelevant information, it
mimics a form of cognitive attention in humans. It not only enhanced the capability and efficiency of
Language Models (LM) but also paved the way for the development of advanced Al architectures
like the Transformer model (Vaswani et al.| 2017).

These advances have had far-reaching impacts, extending beyond Natural Language Processing
(NLP) to other areas such as image recognition (Dosovitskiy et al., 2021)), autonomous systems (Mott
et al., [2019), and even healthcare (Choi et al., [2016), where Al can now make more nuanced and
context-aware decisions.

Numerous attention mechanisms have been put forward even before the seminal paper of [Bahdanau
et al.|(2015). Nonetheless, the standardisation of the attention mechanism put forward by |Vaswani
et al.|(2017) remains predominant even in 2024.

“The bigger the better" has been the prevailing maxim in Al in the last few years. Larger Language
Models (LLM), such as Llama 2 (Touvron et al.| 2023alb)), GPT-4 (Achiam et al., 2023)), and Gemini
(Anil et al.| 2023)) have demonstrated unprecedented capabilities in NLP tasks.

However, the behemothic sizes of these models have introduced numerous challenges, such as
expensive and slow training and inference, leading to secondary problems such as high carbon
emission, contributing to global warming (Dhar}, [2020). Furthermore, such models are impossible
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not only to run but even to store on edge devices such as smartphones, consumer laptops, and even
powerful personal workstations.

In the last few years, there have been numerous attempts to address this problem using quantisation
(Jacob et al. 2018), Low-Rank Adaptation (LoRA) (Hu et al., |2022), Quantised LoRA (QLoRA)
(Dettmers et al.l|2023)), and sparsification (Ashkboos et al.,|[2024)).

There have also been attempts to optimise the speed and GPU utilisation of attention-based models.
Notable examples include Flash Attention|Dao et al.|(2022) and its successor, Flash Attention 2 Dao
(2024). We explain all these approaches in more detail in the related work in Section [5

All these approaches focus on techniques to improve the performance of attention-based models
without altering the attention mechanism. In this paper, we look into the attention mechanism itself
and put forward three attention mechanisms, Optimised Attention, Efficient Attention, and Super
Attention. Our contributions are founded on three observed principles:

1. Two consecutive linear transformations result in a linear transformation.
2. Multi-Head Attention (MHA) provides little to no gain compared to single head attention.

3. A linear kernel between each input increases the learning capabilities.

Using Principle I, Optimised Attention omits the WV kernel (see Eq. ), while preserving the
learning capabilities of standard attention. We use Principle [I| once more to introduce Optimised
Attention, which not only omits WV but also WX (see Eq. (5)). Optimised Attention also utilises
Principal [2]to reduce the number of parameters while performing on par with standard attention in
terms of learning capabilities. Finally, using Principalg] and building on top of Efficient Attention,
Super Attention introduces a new learnable kernel W boosting the performance of the attention
mechanism in both vision and NLP tasks compared to standard attention, while being more efficient
and having fewer parameters.

We validate our findings on image classification tasks on MNIST and CIFAR100 datasets as well as
on text sentiment analysis on IMDB and Amazon Reviews datasets.

In summary, our contributions are as follows.

* We introduce Optimised Attention in Section [3.1] which

¢ reduces the attention layer’s size by 1/4 and its computational cost by ~ matrix multiplication,
where h is the number of heads, thereby reducing its training and inference time by 3-10% as
we show in Section 4.1}

o performs similarly to standard attention in terms of learning capabilities as we demonstrate in
Section[4.1] and

o is equivalent to the standard multi-head attention in terms of linear rank as we show in Section[3.1]
* We introduce Efficient Attention in Section @], which is our most efficient attention mechanism,
¢ reducing the attention layer’s size by 1/2 and its computational cost by 24 matrix multiplications,
thereby reducing its training and inference time by 11-50% as we show in Section[d.1] and
o performing as well as the standard attention in terms of loss and accuracy while being up to
twice as fast as we demonstrate in Section LTl
* We introduce Super Attention in Section [3.3] which is our most capable attention mechanism,

¢ reducing the attention layer’s size by 1/4 and its computational cost by 2/ — 1 matrix multiplica-
tions, when the context length is equal to or smaller than the model dimension, thereby reducing
the training and inference time by 4-45% as we show in Section[4.1] and

o outperforming standard attention by 2—7% in terms of accuracy in both vision and language
classification tasks.

2 Preliminaries

We introduce the notations and definitions that we will use throughout the paper in this section. For
natural numbers d,,,d; € N, we denote the d,,-dimensional real vectors space by R4m and the
set of all real d,,, x dj, matrices by R%m > noting that all matrices can be regarded as 2D tensors



and vice versa. Given a set A C R%, we denote the smallest real vector space containing A by
span(A). Similarly, given matrices for a mtrix W € R%»* %k we denote the smallest real vectors
space containing the columns of 1W’s by span(W). For a subspace S < R, the dimension of
S, denoted dim(S), is the size of the largest linearly independent set in S. The rank of a matrix
W € Rém>dx_denoted rank(WV), is the number of linearly independent columns (or rows) in W.
The rank-nullity theorem implies that rank(W) = dim(span(W)) and rank(W) < min(d,, dg).
For a more in-depth introduction on these see (Meyer}, |2023| Chapters 2 & 4).

We use the definition of the attention mechanism used in the implementations of MHA in machine
learning frameworks, such as Torch, JAX, TensorFlow, and Keras.

Definition 1 (Standard Attention). The (multi-head) attention mechanism on input tensors @, K,V €
R%dm is defined as

O =(H,Hy --- H,)WO, (D

H; =SV, )
! A

S; = soft]rnax(Q\"/[;T:T ), 3)

v/ =vwY, “4)

K| =KWK, 3)

Qi =QWe, ©6)

where O is the output; Q}, K, V/,S;, and H; are the query, key, value, attention score, and head
value of the i-th head, respectively. The natural numbers ¢, d,,, and & are the context length, model
dimension, and number of heads, respectively. Moreover, VViQ7 WZ-K € R¥m>dr and WZ-V € Rimxdv
where dj, and d,, are the key and value dimensions, respectively.

Parameters d,,, d, d,, and h are often chosen so that d, = d,, = d,, /h, and in most recent models,
including tranformer models, @, K, and V" are set to X, a single input tensor; whereby, the attention
mechanism is called self-attention.

We use the notation used in Definition [I] throughout the paper; in particular in Definitions [2H4]

3 Revising the Attention Mechanism

We delve into the mathematical underpinnings of the attention mechanism and present enhanced
attention mechanisms that are more efficient (in terms of number of parameters and computation
cost) and more potent (in terms of attaining higher accuracies and lower losses).

Specifically, we introduce Optimised Attention in Section[3.1} Efficient Attention in Section[3.2] and
Super Attention in Section[3.3] We provide a detailed mathematical analysis of each of them in their
corresponding sections. We evaluate all mechanisms in Section{.1]

3.1 Optimised Attention: Absorbing W ’s into W°

We start by optimising operations () and (@) of the attention mechanism. We do this by absorbing
WY Wy, ..., WY into WO, thereby reducing the computational cost of the attention layer by &
matrix multiplications without significantly affecting the performance as we prove in Section 4}

In standard attention, the output O can be written as

WP

wy
O = (H, Hy -« H)WO? = (S1VW) SoVWyY - Sy, vy | . -
Wy

= SIVWYWE + SoVIWY W + -+ S, VWY WP,



where W2 is the matrix that contains rows (i — 1)d, + 1,...,id, of W° fori = 1,2,...,h. By
the rank-nullity theorem, for each head, we have that

dim(span(VW}Y W) = rank(VW}Y W) < rank(W,) WP),
< min(rank(W,"), rank(W?)) = min(d,,, dy) = d,.

In other words, VWY W2 has at most d, independent columns, and the linear function V'~
VWY W2 maps the columns of V into a d,,-dimensional subspace of R%.

Thus, standard attention uses two matrix consecutive multiplication to embed the columns of V' into
a d,,-dimensional subspace of R%~ , which is inefficient according to Principal {1} which we validate
in Section ] In Optimised attention, we achieve the same effect by one slicing and one matrix
multiplication, thereby reducing the computational cost of attention during training and inference.

In more details, we propose that instead of multiplying V' from the right by W}V, to slice V into
Vi,..., Vi, where V; consists of columns (i — 1)d, + 1,...,id, of V. Then, in the attention
mechanism, instead of computing SiVI/Vq;V Wio, we compute SiVZ-WiO, which has fewer parameters
and matrix multiplications (see Remark [T). We refer to this optimised attention mechanism as
Optimised Attention. As we show in Section [ Optimised Attention considerably improves the
efficiency of the attention layer without affecting the model’s performance.

Definition 2 (Optimised Attention). Using the notation of Definition |1} Optimised Attention is the
attention mechanism defined by the following set of equations:

O = (Hy,Hy,...,H,) WO, )

H; = S;V;, )
QIK'T

S; = softmax(—=—+), (10)
( NG )

K| =KW}, (11)

Q) =Qwe. (12)

Remark 1. Optimised Attention is more efficient than standard attention in the sense that it has h
matrix multiplication and d?, parameters fewer than standard attention.

Proof. Compared to Optimised Attention, standard attention has extra W}, W', ..., WY, which
are multiplied from the right to V, amounting to a total of d,,,d,h = d?, parameters and h matrix
multiplications. O

3.2 Efficient Attention: Absorbing WX into 1V
We now turn our focus to the attention scores .S; in Eq. (3)). Let us denote the pre-softmax scores by

WEWETKT
A= de—k, (13)

so that S; = softmax(4;). Let W&* = W2WXT. By the rank-nullity theorem, we have that
rank(WiQK) = min(rank(WiQ),rank(WiK)) < min(dy,, di) = di, (14)

because WiQ, WK € Rdm>dr_In other words, rank(WiQK) < dj, even though WiQK € RdmXdm,
In turn, this implies that rank(A;) < dy fori = 1,2, ..., h. Thus, most rows (and columns) in WiQK
and A; are linearly dependent (except at most dj, of them), which is less than ideal. Therefore, the
combined rank of all A;’s from different heads is at most hdy,. Since h and d}, are often chosen such
that d, = d,,,/h, the overall combined rank from all heads is at most d,,, which is what one would
ideally obtain from a single W@X ¢ R9m*dm instead of h matrices.

To address these, we introduce Efficient Attention. Efficient Attention builds on top of Optimised
Attention and optimises it even further as follows. First, we apply Principle[I]to Eq. and replace
WiQ WK ZT with a single WiQ € R4m>dm This has two advantages: (i) reduces the number of matrix



multiplications required and (ii) allows A;’s to have full d,,, rank. However, this also increases the
layer size when the number of heads is greater than 2 as we are replacing 2d,,,d; parameters in

W& WF e Rim*dsby d2 = hd,,dy, parameters of W<,

To prevent the increase in size, we apply Principle[2]and limit the number of heads to one. As we
demonstrate in Section[4.1] the models with single-head Efficient Attention perform on par with the
model using multi-head standard attention while being significantly faster and smaller.

Definition 3 (Efficient Attention). Using the notation of Definition [2] Efficient Attention is the
attention mechanism defined by the following set of equations:

O = HWO, (15)

= SV, (16)
/KT

), 17

Vdy

H
S = softmax(
Q = QWe. (18)

Remark 2. Efficient Attention is more efficient than Optimised Attention and standard attention in
the sense that it has h matrix multiplication and d2, parameters fewer than Optimised Attention and

2h multiplication and d,,,(d,h + d,,,) parameters fewer than standard attention.

Proof. In Efficient Attention, we replace all W2 W s with a single W®@ € R%*dn _ Therefore,
we have reduced the number of matrix multiplications by h, thereby improving the training and

inference time of the model. We have also reduced the model size as W has d?, parameters, while
wE wE, .. WK and WE W, ., W,? have a total of 2hd,,,d), parameters, which based on
the common choices of h and dy, in practice, amounts to 2d2, parameters. From this and Remark

it follows that Efficient Attention has h + h = 2h matrix multiplication and d2, + d2, = 2d,,
parameters fewer than standard attention. O

Efficient Attention reduces both the size and computational cost of the model, while preserving
the overall rank of pre-softmax scores. More concretely, for given query @ and key K, if we
denote the corresponding pre-softmax scores in Efficient Attention by A and in standard attention by
Ay, As ..., Ay, it follows from Equations that

mjx(dim(span(A))) = I‘I}V%x(min(rank(Q), rank(W?), rank(K)))

(19)
= min(rank(Q), d,,, rank(K)).
and from Equations (3) and (5H6) that
; o
4max (dnn(span(i:1 A)) = %agc(rnlrl(rank(Q), dlm(span(i:1 WEW;t ), rank(K))) 20)
= min(rank(Q), hd, rank(K)).
From Equations (19H20) and the fact that hdy = d,,, we conclude that
h
max(dim(span(4)))= max (dim(span(U 4;))) @1
A Aty Ay, i=1

for all queries and keys.

In other words, Eq. tells us that the amount of linearly independent informationin Ay, As, ..., Ay
(from h-head standard attention) is equivalent to the amount of linearly independent information in
A (from single head Efficient Attention). In Section we study the effect of this in practice by
showing that single-head efficient attention performs about the same, and sometime better, compared
to multi-head standard attention while being significantly faster and smaller.



3.3 Super Attention: Introducing 174

In standard attention, all of the inputs @), K, and V undergo linear transformations via multiplication
by their corresponding kernels from the right, as described in Equations (@H6). As we discussed in
Section this is redundant for V as V is consecutively multiplied from the right by WV and W©.
Thus, following Principal [I| we omit one of them. We also discussed in Section [3.2] how we can
omit WX as after transposing K’ = KW key and query kernels end up next to each other (see
Eq. @])), and thus, we can omit one of them.

All three attention mechanisms, we discussed so far, have a learnable linear kernel between () and
KT but not between KT and V. To better see this, let us write the equation for one of the attention
mechanisms discussed so far, e.g., Efficient Attention by combining Equations (I5H18):

QWOKT

m

O = softmax( WWoO. (22)
As we see, there are no learnable parameters in between KT and V/, connecting the two. The intuition
behind directly multiplying V' by the attention scores S is that the attention scores indicate how much
“attention” should be paid to each of the velues in V.

Despite the intuition, this results in loss of performance as evident in Section We use Principal
to address this by introducing a new attention mechanism in Definition 4] with an additional learnable
kernel W4 which comes in between S and V. The values V" are then multiplied by W4 from the left
(see Eq. (26)), aligning and mixing the values before the attention score are applied to them.

Definition 4 (Super Attention). Using the notation of Definition 3| Super Attention is the attention
mechanism defined by the following set of equations:

O = HWO, (23)

H = SV, (24)

S f KT 25
= t B

softmax( NG ) (25)

V' = WAV, (26)

Q = Qwe, 27)

where W4 € R** is the alignment kernel, which vertically (i.e., for values corresponding to different
tokens) aligns and mixes the values before the attention scores are applied to them.

Remark 3. Super Attention is more efficient than standard attention whenever the model dimension
d., is greater than or equal to the context length ¢. This means that Super Attention has at least 2h — 1
matrix multiplication and d?, parameters fewer than standard attention.

Proof. Looking at the Equations (I5HI8) and (Z3H27), we observe that Super Attention and Efficient
Attention have the same defining equations, except that Super Attention has an the additional linear
transformation in Eq. (26), where V' is multiplied by W4 € R®**. This amounts to a total of ¢>
additional parameters and one matrix multiplication.

By Remark Efficient Attention has 2k multiplication and 2d?, parameters fewer than standard
attention. Therefore, Super Attention has 2h — 1 matrix multiplication and 2d2, — ¢? parameters
fewer than standard attention. Since ¢ < d,,,, we have that 2dfn — 2> dfn. Thus Super Attention
has d2, fewer parameters than standard attention. O

To better understand Super Attention, let us write its complete equation. By combining Equations (23}

[27), we have that

QWERKT
dm

In Eq. , W4 comes in between the attention scores S and values V/, aligning and mixing the

values (tokenwise) before the attention scores are applied to them. As we show next, this results in a
far better learning performance compared to the other attention mechanisms.

O = softmax( YWAVWO. (28)



4 Evaluation

We evaluate all the attention mechanisms discussed here in vision and natural language applications.
We have chosen classification tasks in both domains for two reasons. First, our limited computing
resource of one Nvidia RTX 4090 GPU. Second, classification tasks provide clear comparison metrics
like accuracy. For the evaluation, we train Transform models using each attention mechanism,
discussed here, until the learning curves flatten. To ensure the reliability, we report results averaged
over five training runs. We then evaluate the performance of all the attention mechanisms, in terms of
loss and accuracy, in image classification on MNIST (LeCun et al.,2010) and CIFAR100 (Krizhevsky,
2009)) datasets and text sentiment analysis on IMDB Movie Reviews (Maas et al.,2011)) and Amazon
Reviews (Ni et al.| 2019) datasets. We have chosen these datasets as they each introduce different
challenges because of varying dataset sizes, input sizes, and number of classes.

Additionally, we analyse the performance of each attention mechanism on an edge device to demon-
strate how our contribution can be used for wider deployability of Al models on user devices. To this
end, we compare the inference speed for all Transformer models on each task in Section[.1.4] Our
results indicate that the Transformer models using Efficient and Super Attention are around 25-45%
faster than their standard counterparts on a device with limited resources while being on par or better.

4.1 Performance Comparison

We compare the proposed attention mechanisms against standard attention in this section. In all
experiments, all attention mechanisms except standard and Optimised Attention use a single head.
There are two reasons why we use a single head for the rest of attention mechanisms. First, we have
found that using multiple heads provides us with little extra gain in most cases. This is even the
case for standard attention as evident in (Vaswani et al.,[2017, Table 3); nonetheless, we have varied
the number of heads for standard and Optimised attention in Tables[T|to[d] to further showcase this.
Remember that we also provided the intuition as to why this is the case in Section[3.2] Second, except
for Optimised and standard Attention, the model sizes increase by the number of heads as in the other
models as W& € Rém*dm is always a square matrix (see Definitions 3] and [4).

Experimental Setup. We have implemented all experiments in Keras with the JAX backend
using the examples provided in keras. io/examples|with minor dataset-specific adjustments, e.g.,
modifying the number of classes, layers, etc. The reported results in all experiments are obtained by
averaging the results over 5 runs. Where relevant, we have included 95% Confidence Intervals (CI).
While we report the results for standard and Optimised attention for varying number of heads, we
consider 4 heads as the comparison benchmark against the others.

4.1.1 Ablation Study on Number of Heads

In practice, Transformer (as well as other attention-based) models are implemented using standard
multi-head attention. In (Vaswani et al.,[2017)), the authors suggest that using multiple heads could
lead to learning richer representations and ultimately better performance. Since increasing the number
of heads does not increase the number of parameters in standard and Optimised attention, we conduct
ablation studies on the number of heads for both these mechanism. However, for Efficient and Super
attention, we always use a single head.

The results, detailed in Tables [I]to[d} indicate that increasing the number of attention heads increases
the training time across all tested models. Specifically, in computer vision tasks, increasing the
number of heads from 1 to 4 (6 for CIFAR-100) leads to a training time surge of 1-4% and 1-3%
in standard and Optimised attention models, respectively. In natural language tasks, these number
are 11-50% for standard attention and 8-59% for Optimised Attention. As showcased in Table [5]
at inference time on an edge device, increasing the number of heads increases the inference time
30-55% and 29-51% for standard and Optimised attention models respectively.

For other performance metrics like train/test accuracy and loss, Tables (1| to {4 show that increasing
the number of heads increases the computational cost of training the models but does not yield a
significant, if any, boost in performance.


https://keras.io/examples

4.1.2 Vision Transformers

Vision Transformers are increasingly adopted across computer vision. As such, we evaluate the
proposed mechanisms, for use in ViT, on two widely used image classification datasets, MNIST
(LeCun et al., 2010) and CIFAR100 (Krizhevsky, 2009).

MNIST. We trained ViT models with different attention mechanisms, all with two attention layers
and model dimension d,,, = 64. As expected, Super Attention outperforms all other architectures, in
terms of accuracy, by at least 5.7% and standard attention by 6.6%. The smallest attention layer size
belongs to Efficient Attention, which performs on par with standard attention. The complete results
are presented in Table[I]

Table 1: Averages of different metrics over five runs in the MNIST experiment. The numbers in
parentheses indicate the ranking of each mechanism for that metric. Ablation studies on the number
of heads for standard and Optimised attention models show that increasing the number of heads does
not meaningfully affect performance. As expected, the Efficient Attention model has the smallest
attention layer size and the Super Attention model performs the best in terms of accuracy and loss.

Att.  h dp  dg # Param. Avg. Time (s) Acc. (%) Loss Test Acc. (%) Test. Loss
1 64 64 16,640 40.33 71.7 0.83 89.6 0.41
Stn. 2 64 32 16,640 40.43 69.5 0.86 87.5 0.43
4 64 16 16,640 (4) 40.84 (4) 73.03) 0.79 (3) 88.5(2) 0.39 (3)
1 64 64 12480 38.25 70.0 0.87 86.4 0.51
Opt. 2 64 32 12,480 38.28 74.3 0.78 88.7 0.39
4 64 16 12,480(2) 38.57 (2) 71.0(4) 0.82(4) 87.6 (4) 0.43 (4)
Eff. 1 64 64 8320(1) 36.48 (1) 739 (2) 0.75(Q2) 88.2 (3) 0.36 (2)
Sup. 1 64 64 12,480 (2) 39.34 (3) 79.6 (1) 0.59(1) 90.0 (1) 0.31 (1)

CIFAR100. Classifying CIFAR100 images presents considerable difficulty due to the large number
of classes in the dataset. This complexity necessitates the maximal utilisation of the attention layers,
thereby presenting the perfect challenge for comparing the attention mechanisms discussed here. We
trained ViT models with eight attention layers, each with d,,, = 144. As presented in Table |2} the
Super Attention model surpasses all other architectures achieving 45.4% top-5 accuracy as opposed
to standard attention with 33.4% top-5 accuracy. The Efficient Attention model has the smallest
attention layer size, only half of that of the standard attention model.

For further insight, we have provided the accuracy and validation accuracy curves in Fig.[l| We have
also included the results for varying numbers of heads in the standard attention model in Table 2}

Table 2: Averages of different metrics over five runs in the CIFAR100 experiment. The numbers in
parentheses indicate the ranking of each mechanism for that metric. Ablation studies on the number
of heads for standard and Optimised attention models show that increasing the number of heads does
not meaningfully affect performance. As expected, the Efficient Attention model has the smallest
attention layer size and the Super Attention model performs the best in terms of accuracy and loss.

Att. h d, di #Param. Avg. Time Acc. Loss Top5  Test Acc. TestLoss Test Top 5
1 144 144 83,520 113.48 12.5 3.64 35.8 15.3 3.52 40.3
Stn 2 144 72 83,520 116.16 12.2 3.65 352 14.6 3.54 394
T4 144 36 83520(4) 11594(4) 11.1(4) 3.69(4) 334(4) 125@) 3.64(4) 3604
6 144 24 83,520 118.27 13.3 3.58 37.1 15.6 3.49 40.6
1 144 144 62,640 107.08 14.4 3.54 38.9 17.2 343 432
Ont 2 144 72 62,640 107.41 14.9 3.50 39.6 17.5 3.41 435
Pl g4 144 36 62,640(2) 107.94(2) 146(2) 3.50(2) 39.1(2) 163(3) 345(3) 41.7 (3)
6 144 24 62,640 109.82 14.6 3.49 39.5 16.4 345 41.7
Eff. 1 144 144 41,760 (1) 100.15(1) 144(3) 3.52(3) 387(3) 167(2) 344(Q2) 426(2)
Sup. 1 144 144 62,640(2) 11097 (3) 174(1) 329(1) 454(1) 194(@1) 329(D) 47.6 (1)
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Figure 1: Average and 95% CI of train/validation loss, accuracy, and top 5 accuracy of the models
using each attention mechanism over 50 training epochs on CIFAR100 dataset.

4.1.3 Natural Language Processing

Now, we evaluate the attention mechanisms introduced here in Transformer models of different
sizes for sentiment analysis on IMDB and Amazon Reviews datasets. Similarly to Section[d.1.7] the
Transformer models using Efficient Attention results in the smallest models and Super Attention
achieves the highest performance. The differences in performance are more pronounced in the more
challenging Amazon Reviews dataset as presented in Tables [3|and [

IMDB. The IMDB dataset includes 50,000 reviews with binary labels, indicating negative and
positive sentiments. The Transformer models, used in this experiment, all have a single attention
layer with model dimension and context length 32. The complete results are presented in Table [3]

Table 3: Averages of different metrics over five runs in the IMDB experiment. The numbers in
parentheses indicate the ranking of each mechanism for that metric. Ablation studies on the number
of heads for standard and Optimised attention models show that increasing the number of heads does
not meaningfully affect performance. As expected, the Efficient Attention model has the smallest
attention layer size and the Super Attention model performs the best in terms of accuracy and loss.

Att. h d,, di #Param. Avg. Time Acc. (%) Loss Test Acc. (%) Test Loss
1 32 32 47224 0.284 96.09 0.0821 78.09 0.461
Stn. 2 32 16 47224 0.297 95.51 0.112 78.14 0.467
4 32 8 42244 03154 95704) 0.086 (3) 77.62 (3) 0.474 (3)
1 32 32 3,168 0.283 96.62 0.070 78.00 0.461
Opt. 2 32 16 3,168 0.299 96.77 0.073 78.00 0.460
4 32 8 3,168(2) 0.305(3) 96.31(3) 0.09514) 77.85 (2) 0.472 (1)
Eff. 1 32 32 2,112(1) 0.274(1) 96.66 (2) 0.080 (2) 77.58 (4) 0.478 (4)
Sup. 1 32 32 3,168(2) 0289(2) 97.68(1) 0.063 (1) 78.21 (1) 0.472 (1)

Amazon Reviews. The Amazon Reviews dataset poses a different challenge than the IMDB dataset
as it is a significantly larger dataset with 3,650,000 reviews, containing a wider range of sentiments
in 1,2, ...,5; higher values indicate more positive sentiment. The Transformer models, used in this
experiment, all have three attention layers with model dimension and context length 64. The complete
results are presented in Table

4.14 Edge Device Performance

Our main motivation for introducing Optimised, Efficient, and Super Attention is to allow running
more capable models on edge devices. We calculated the inference times of the Transformer models,
we trained before, on a MacBook Pro with an M2 Chip for each task/attention mechanism in Table 3]



Table 4: Averages of different metrics over five runs in the Amazon Reviews experiment. The
numbers in parentheses indicate the ranking of each mechanism for that metric. Ablation studies on
the number of heads for standard and Optimised attention models show that increasing the number of
heads does not meaningfully affect performance. As expected, the Efficient Attention model has the
smallest attention layer size and the Super Attention model performs the best in accuracy and loss.

Att. h d,, dg # Param. Avg. Time Acc. Loss Test Acc. Test Loss
1 64 64 16,640 13.60 61.33 0.897 52.84 1.094
Stn. 2 64 32 16,640 15.80 63.61 0.851 52.71 1.091
4 64 16 16,640(4) 2038(@4) 6254((2) 0.868(12) 52.74(4) 1.097 (4)
1 64 64 12480 12.54 60.71 0.909 52.79 1.093
Opt. 2 64 32 12,480 14.37 62.04 0.884 52.93 1.090
4 64 16 12,480(12) 19.89(3) 61.64(4) 0.876(4) 52.88(3) 1.090(3)
Eff. 1 64 64 8320(1) 10.87 (1) 62.23((3) 0.873(3) 5325(12) 1.082(2)
Sup. 1 64 64 12,480(2) 11.96(2) 66.65(1) 0.776(1) 53.87(1) 1.070 (1)

5 Related Work

After the adoption of Transformers, different research directions have emerged to address different
shortcomings of the attention mechanism and Transformer models.

The computational complexity of Transformers increases quadratically in the input length. Sparse
attention reduces the computational complexity by focusing on key input parts (Child et al.l 2019). A
notable application of this is Longformer (Beltagy et al., [2020; |Zhang et al.,|2021a), which employs a
unique attention pattern combining local and global attention.

Despite their efficiency in handling long sequences, sparse attention models like Longformer struggle
in tasks that require a comprehensive analysis of the entire sequence, where understanding full
the context is essential. Therefore, a new line of research has emerged that focuses on optimising
multi-head attention for modern GPUs without changing its structure. Some of the most prominent
examples include Flash Attention (Dao et al.l|2022) and its successor, Flash Attention 2 (Dao} [2024)).
Flash Attention’s optimisation involves reordering the attention computation and utilising efficient
memory handling techniques like tiling, allowing for faster processing and reduced memory demands.
Flash Attention-2 further enhances this by refining computational aspects, particularly for handling

Table 5: Total inference times (in seconds) for each attention mechanism/dataset pair on an Apple
M2 chip over 5,000 samples. Ablation studies on the number of heads for standard and Optimised
attention models show that increasing the number of heads lead to a significant increase in inference
time on edge devices. As expected, Efficient and Super Attention models are the fastest. Also,
Optimised Attention models are faster than their standard counterpart with the same number of heads
while performing equally well as we discussed before.

Name h CIFAR100 MNIST IMDB Amazon
1 35.68 2.53 0.219 1.43
Stndard 2 A3 2.72 0.247 1.54
4 5152(4) 327(4) 0284(3) 2.09(4)
6 5547 - ; .
1 3451 2.45 0.213 1.40
otimised 2 4070 2.64 0.242 1.52
PUMISEE 4 5101 (3) 3.16(3) 0284(3) 2.05(3)
6 5218 ] ; ;
Efficient 1  3229(1) 232(1) 0208(1) 1.23(2)
Super 1 3345(2) 250(2) 02212 1.22(1)
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longer sequences. These modifications do not change the core structure of the standard multi-head
attention but make it more efficient for large-scale applications.

Since the adoption of LLMs and large Foundation Models (FMs), a significant amount of work has
been done on improving the scalability and deployability of such models. |Hu et al.| (2022)) introduced
LoRA for adapting pre-trained models with minimal additional parameters by focusing on altering
the rank of weight matrices. This approach allows for efficient fine-tuning of large models, enhancing
their practicality across a broader range of applications. Building on this, QLoRA (Dettmers et al.,
2023)) incorporates quantisation, reducing the precision of numerical representations within the model.
This results in a substantial reduction in both memory and computational demands, thereby making
large models more accessible and efficient for deployment in various settings.

Quantisation, striving to make neural networks more efficient in memory and computation, has
revolutionized the adoption of FMs, particularly those based on Transformers. Recent advances
include mixed-precision post-training quantisation for vision transformers, which maintains attention
mechanism integrity (Liu et al.,[2021). This involves novel quantisation strategies, like similarity-
aware and ranking-aware techniques. Moreover, [Ding et al.|(2022) unveild a cutting-edge framework
enhancing quantised model accuracy without significant performance degradation. Beyond post-
training quantisation, research explores methods like quantisation-aware training (Jacob et al., 2018}
Nagel et al.,|2022), mixed-precision training (Micikevicius et al.,[2018), dynamic quantisation (Zhang
et al.,2021b)), and layer-wise quantisation (Chen et al.}2019), aiming to balance model performance
with computational and memory efficiency. Despite their benefits in reducing neural networks’
memory and computational demands, these quantisation techniques face challenges, including
potential performance drops in complex tasks and increased vulnerability to adversarial attacks,
highlighted by (Hong et al., 2021} Gupta and Ajanthan| 2022).

Finally, there are other lines of work like sparsification that make a neural network sparse, meaning
reducing the number of non-zero elements in the network’s weights. This can involve pruning weights
that have little effect on the output, leading to a network with fewer connections and parameters.
Recently, |Ashkboos et al.| (2024)) introduced a new post-training sparsification technique for large
language models that reduces model size by compressing weight matrices with a 1-10% performance
degradation. In addition to a degradation of performance, increasing sparsity could lead to reduced
robustness as shown by [Timpl et al.| (2022)).

Conclusions

This paper presents a significant leap forward in the evolution of attention mechanisms, particularly
addressing the challenges posed by large foundation and language models. Our introduction of
Optimised Attention, Efficient Attention, and Super Attention marks a transformative change in
the efficiency and efficacy of Al systems. These mechanisms, introduced here, not only reduce
computational costs and model sizes—thereby making Al more accessible and sustainable—but also
maintain, and in case of Super Attention enhance the performance of attention-based models.

Optimised Attention is the ideal replacement for standard attention where using multiple heads
is an essential part of the model design. It is the most similar attention mechanism to standard
attention among the ones introduced here. It reduces the attention layer size by 25% as well as its
computational cost while performing similarly in vision and natural language tasks.

Efficient Attention is the most efficient full attention mechanism that we are aware of, performing
on par with the standard attention on both vision and natural language tasks while having half as
many parameters. We showed that models using Efficient Attention are up to twice as fast compared
to their counterparts that use the standard attention. We believe Efficient Attention can replace
standard attention in the models that use attention mechanism, allowing them to be smaller, faster,
and deployable on a wider range of devices.

Super Attention outperforms standard attention as well as Optimised and Efficient Attention in both
vision and natural language tasks by a substantial margin while being smaller than standard attention
by at least 25% and faster by up to 45% when the context size is equal to or smaller than the model
dimensions. As such, Super Attention is an ideal replacement for standard attention in tasks where
high performance is essential and the context size is proportional to the model dimension.
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The impressive performance of the attention mechanisms introduced here in diverse tasks under-
scores their versatility and potential to redefine the landscape of Al. As Al continues to evolve, the
developments presented in this paper will likely play a pivotal role in shaping the future of efficient,
powerful, accessible and environmentally conscious Al.

Acknowledgments and Disclosure of Funding

This work is partially supported by the UK EPSRC via the Centre for Doctoral Training in Intelligent
Games and Game Intelligence (IGGI; EP/S022325/1).

References

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” in
3rd International Conference on Learning Representations, ICLR. OpenReview.net, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin, “Attention
is all you need,” in Advances in neural information processing systems, NeurIPS. Curran Associates, Inc.,
2017, pp. 5998-6008.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image
recognition at scale,” in 9th International Conference on Learning Representations, ICLR. OpenReview.net,
2021.

A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende, “Towards interpretable reinforcement
learning using attention augmented agents,” in Advances in Neural Information Processing Systems, NeurIPS,
2019, pp. 12329-12 338.

E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. F. Stewart, “RETAIN: an interpretable predictive
model for healthcare using reverse time attention mechanism,” in Advances in Neural Information Processing
Systems, NeurlPS, 2016, pp. 3504-3512.

H. Touvron, T. Lavril, G. Izacard et al., “Llama: Open and efficient foundation language models,” 2023, arXiv
preprint arXiv:2302.13971.

H. Touvron, L. Martin, K. Stone et al., “Llama 2: Open foundation and fine-tuned chat models,” 2023, arXiv
preprint arXiv:2307.09288.

J. Achiam, S. Adler, S. Agarwal et al., “GPT-4 technical report,” 2023.

R. Anil, S. Borgeaud, Y. Wu et al., “Gemini: a family of highly capable multimodal models,” 2023, arXiv
preprint arXiv:2312.11805.

P. Dhar, “The carbon impact of artificial intelligence.” Nature Machine Intelligence, vol. 2, no. 8, pp. 423425,
2020.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D. Kalenichenko, “Quantization
and training of neural networks for efficient integer-arithmetic-only inference,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR. Computer Vision Foundation / IEEE, 2018, pp.
2704-2713.

E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adap-
tation of large language models,” in /0th International Conference on Learning Representations, ICLR.
OpenReview.net, 2022.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient finetuning of quantized llms,” 2023,
arXiv preprint arXiv:2305.14314.

S. Ashkboos, M. L. Croci, M. G. do Nascimento, T. Hoefler, and J. Hensman, “Slicegpt: Compress large language
models by deleting rows and columns,” in 12th International Conference on Learning Representations, ICLR.
OpenReview.net, 2024.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient exact attention with

io-awareness,” in Advances in Neural Information Processing Systems, NeurIPS, vol. 35. Curran Associates,
Inc., 2022, pp. 16 344-16 359.

12



T. Dao, “Flashattention-2: Faster attention with better parallelism and work partitioning,” 2024.

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, 2nd ed., ser. Other Titles in Applied Mathematics.
SIAM, 2023.

Y. LeCun, C. Cortes, C. Burges et al., “Mnist handwritten digit database,” http://yann.lecun.com/exdb/mnist,
2010, accessed: 2020-06-13.

A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, Tech. Rep., 2009.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors for sentiment
analysis,” in The 49th Annual Meeting of the Association for Computational Linguistics, ACL.  The
Association for Computer Linguistics, 2011, pp. 142-150.

J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews and fine-grained
aspects,” in Empirical Methods in Natural Language Processing EMNLP. Association for Computational
Linguistics, 2019, pp. 188-197.

R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse transformers,” 2019,
arXiv preprint arXiv:1904.10509.

I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,” 2020, arXiv preprint
arXiv:2004.05150.

P. Zhang, X. Dai, J. Yang, B. Xiao, L. Yuan, L. Zhang, and J. Gao, “Multi-scale vision longformer: A new vision
tansformer for high-resolution image encoding,” in IEEE/CVF International Conference on Computer Vision,
ICCV. IEEE, 2021, pp. 2978-2988.

Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training quantization for vision transformer,” in
Advances in Neural Information Processing Systems, NeurIPS, vol. 34. Curran Associates, Inc., 2021, pp.
28092-28 103.

Y. Ding, H. Qin, Q. Yan, Z. Chai, J. Liu, X. Wei, and X. Liu, “Towards accurate post-training quantization
for vision transformer,” in 30th ACM International Conference on Multimedia, MM. ACM, 2022, pp.
5380-5388.

M. Nagel, M. Fournarakis, Y. Bondarenko, and T. Blankevoort, “Overcoming oscillations in quantization-
aware training,” in 39¢th International Conference on Machine Learning, ICML, ser. Proceedings of Machine
Learning Research, vol. 162. PMLR, 2022, pp. 16 318-16 330.

P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaieyv,
G. Venkatesh, and H. Wu, “Mixed precision training,” in 6th International Conference on Learning Represen-
tations, ICLR. OpenReview.net, 2018.

Z.Zhang, W. Shao, J. Gu, X. Wang, and P. Luo, “Differentiable dynamic quantization with mixed precision
and adaptive resolution,” in 38th International Conference on Machine Learning, ICML, vol. 139. Curran
Associates, Inc., 2021, pp. 12 546-12 556.

S. Chen, W. Wang, and S. J. Pan, “Deep neural network quantization via layer-wise optimization using limited
training data,” in AAAI Conference on Artificial Intelligence. AAAI Press, 2019, pp. 3329-3336.

S. Hong, M. Panaitescu-Liess, Y. Kaya, and T. Dumitras, “Qu-anti-zation: Exploiting quantization artifacts for
achieving adversarial outcomes,” in Advances in Neural Information Processing Systems, NeurIPS. Curran
Associates, Inc., 2021, pp. 9303-9316.

K. Gupta and T. Ajanthan, “Improved gradient-based adversarial attacks for quantized networks,” in AAAI
Conference on Artificial Intelligence. AAAI Press, 2022, pp. 6810-6818.

L. Timpl, R. Entezari, H. Sedghi, B. Neyshabur, and O. Saukh, “Understanding the effect of sparsity on neural
networks robustness,” 2022, arXiv preprint arXiv:2206.10915.

13



	Introduction
	Preliminaries
	Revising the Attention Mechanism
	Optimised Attention: Absorbing WVi's into W0
	Efficient Attention: Absorbing WK into WQ
	Super Attention: Introducing WA

	Evaluation
	Performance Comparison
	Ablation Study on Number of Heads
	Vision Transformers
	Natural Language Processing
	Edge Device Performance


	Related Work

